Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2010.02838
Cited By
A Closer Look at Codistillation for Distributed Training
6 October 2020
Shagun Sodhani
Olivier Delalleau
Mahmoud Assran
Koustuv Sinha
Nicolas Ballas
Michael G. Rabbat
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Closer Look at Codistillation for Distributed Training"
8 / 8 papers shown
Title
Scalable Collaborative Learning via Representation Sharing
Frédéric Berdoz
Abhishek Singh
Martin Jaggi
Ramesh Raskar
FedML
17
3
0
20 Nov 2022
lo-fi: distributed fine-tuning without communication
Mitchell Wortsman
Suchin Gururangan
Shen Li
Ali Farhadi
Ludwig Schmidt
Michael G. Rabbat
Ari S. Morcos
19
24
0
19 Oct 2022
Towards Model Agnostic Federated Learning Using Knowledge Distillation
A. Afonin
Sai Praneeth Karimireddy
FedML
30
44
0
28 Oct 2021
Personalized Federated Learning for Heterogeneous Clients with Clustered Knowledge Transfer
Yae Jee Cho
Jianyu Wang
Tarun Chiruvolu
Gauri Joshi
FedML
27
29
0
16 Sep 2021
Scaling Laws for Neural Language Models
Jared Kaplan
Sam McCandlish
T. Henighan
Tom B. Brown
B. Chess
R. Child
Scott Gray
Alec Radford
Jeff Wu
Dario Amodei
226
4,453
0
23 Jan 2020
Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism
M. Shoeybi
M. Patwary
Raul Puri
P. LeGresley
Jared Casper
Bryan Catanzaro
MoE
243
1,817
0
17 Sep 2019
Bag of Tricks for Image Classification with Convolutional Neural Networks
Tong He
Zhi-Li Zhang
Hang Zhang
Zhongyue Zhang
Junyuan Xie
Mu Li
216
1,398
0
04 Dec 2018
Large scale distributed neural network training through online distillation
Rohan Anil
Gabriel Pereyra
Alexandre Passos
Róbert Ormándi
George E. Dahl
Geoffrey E. Hinton
FedML
267
404
0
09 Apr 2018
1