Papers
Communities
Organizations
Events
Blog
Pricing
Feedback
Contact Sales
Search
Open menu
Home
Papers
2010.03957
Cited By
v1
v2
v3
v4
v5
v6 (latest)
Transformers for Modeling Physical Systems
4 October 2020
N. Geneva
N. Zabaras
AI4CE
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Transformers for Modeling Physical Systems"
21 / 71 papers shown
Title
Learning Flow Functions from Data with Applications to Nonlinear Oscillators
Miguel Aguiar
Amritam Das
Karl H. Johansson
83
2
0
29 Mar 2023
Quantifying uncertainty for deep learning based forecasting and flow-reconstruction using neural architecture search ensembles
R. Maulik
Romain Egele
Krishnan Raghavan
Dali Wang
UQCV
AI4TS
AI4CE
97
8
0
20 Feb 2023
AttNS: Attention-Inspired Numerical Solving For Limited Data Scenarios
Zhongzhan Huang
Mingfu Liang
Liang Lin
Liang Lin
150
5
0
05 Feb 2023
DLKoopman: A deep learning software package for Koopman theory
Sourya Dey
Eric K. Davis
AI4CE
86
4
0
15 Nov 2022
Inference from Real-World Sparse Measurements
Arnaud Pannatier
Kyle Matoba
François Fleuret
AI4TS
173
0
0
20 Oct 2022
Mitigating spectral bias for the multiscale operator learning
Xinliang Liu
Bo Xu
Shuhao Cao
Lei Zhang
AI4CE
221
36
0
19 Oct 2022
Efficient Learning of Mesh-Based Physical Simulation with BSMS-GNN
Yadi Cao
Menglei Chai
Minchen Li
Chenfanfu Jiang
AI4CE
144
33
0
05 Oct 2022
Neural Integral Equations
E. Zappala
Antonio H. O. Fonseca
J. O. Caro
David van Dijk
100
15
0
30 Sep 2022
Physics-informed Deep Super-resolution for Spatiotemporal Data
Pu Ren
Chengping Rao
Yang Liu
Zihan Ma
Qi Wang
Jianxin Wang
Hao Sun
130
13
0
02 Aug 2022
LordNet: An Efficient Neural Network for Learning to Solve Parametric Partial Differential Equations without Simulated Data
Xinquan Huang
Wenlei Shi
Xiaotian Gao
Xinran Wei
Jia Zhang
Jiang Bian
Mao Yang
Tie-Yan Liu
PINN
101
14
0
19 Jun 2022
Seeing the forest and the tree: Building representations of both individual and collective dynamics with transformers
Ran Liu
Mehdi Azabou
M. Dabagia
Jingyun Xiao
Eva L. Dyer
AI4CE
127
20
0
10 Jun 2022
Transformer for Partial Differential Equations' Operator Learning
Zijie Li
Kazem Meidani
A. Farimani
165
192
0
26 May 2022
Predicting Physics in Mesh-reduced Space with Temporal Attention
Xu Han
Han Gao
Tobias Pfaff
Jian-Xun Wang
Liping Liu
AI4CE
157
88
0
22 Jan 2022
GrADE: A graph based data-driven solver for time-dependent nonlinear partial differential equations
Y. Kumar
S. Chakraborty
82
8
0
24 Aug 2021
Is attention to bounding boxes all you need for pedestrian action prediction?
Lina Achaji
Julien Moreau
Thibault Fouqueray
François Aioun
François Charpillet
113
38
0
16 Jul 2021
PhyCRNet: Physics-informed Convolutional-Recurrent Network for Solving Spatiotemporal PDEs
Pu Ren
Chengping Rao
Yang Liu
Jianxun Wang
Hao Sun
DiffM
AI4CE
172
219
0
26 Jun 2021
Learning effective stochastic differential equations from microscopic simulations: linking stochastic numerics to deep learning
Felix Dietrich
Alexei Makeev
George A. Kevrekidis
N. Evangelou
Tom S. Bertalan
Sebastian Reich
Ioannis G. Kevrekidis
DiffM
146
45
0
10 Jun 2021
Encoding physics to learn reaction-diffusion processes
Chengping Rao
Pu Ren
Qi Wang
O. Buyukozturk
Haoqin Sun
Yang Liu
PINN
AI4CE
DiffM
166
110
0
09 Jun 2021
CKNet: A Convolutional Neural Network Based on Koopman Operator for Modeling Latent Dynamics from Pixels
Yongqian Xiao
Xin Xu
Yifei Shi
71
9
0
19 Feb 2021
State estimation with limited sensors -- A deep learning based approach
Y. Kumar
Pranav Bahl
S. Chakraborty
74
30
0
27 Jan 2021
A deep learning modeling framework to capture mixing patterns in reactive-transport systems
N. V. Jagtap
M. Mudunuru
K. Nakshatrala
50
5
0
11 Jan 2021
Previous
1
2