ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
  • Feedback
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.03957
  4. Cited By
Transformers for Modeling Physical Systems
v1v2v3v4v5v6 (latest)

Transformers for Modeling Physical Systems

4 October 2020
N. Geneva
N. Zabaras
    AI4CE
ArXiv (abs)PDFHTML

Papers citing "Transformers for Modeling Physical Systems"

21 / 71 papers shown
Title
Learning Flow Functions from Data with Applications to Nonlinear
  Oscillators
Learning Flow Functions from Data with Applications to Nonlinear Oscillators
Miguel Aguiar
Amritam Das
Karl H. Johansson
83
2
0
29 Mar 2023
Quantifying uncertainty for deep learning based forecasting and
  flow-reconstruction using neural architecture search ensembles
Quantifying uncertainty for deep learning based forecasting and flow-reconstruction using neural architecture search ensembles
R. Maulik
Romain Egele
Krishnan Raghavan
Dali Wang
UQCVAI4TSAI4CE
97
8
0
20 Feb 2023
AttNS: Attention-Inspired Numerical Solving For Limited Data Scenarios
AttNS: Attention-Inspired Numerical Solving For Limited Data Scenarios
Zhongzhan Huang
Mingfu Liang
Liang Lin
Liang Lin
150
5
0
05 Feb 2023
DLKoopman: A deep learning software package for Koopman theory
DLKoopman: A deep learning software package for Koopman theory
Sourya Dey
Eric K. Davis
AI4CE
86
4
0
15 Nov 2022
Inference from Real-World Sparse Measurements
Inference from Real-World Sparse Measurements
Arnaud Pannatier
Kyle Matoba
François Fleuret
AI4TS
173
0
0
20 Oct 2022
Mitigating spectral bias for the multiscale operator learning
Mitigating spectral bias for the multiscale operator learning
Xinliang Liu
Bo Xu
Shuhao Cao
Lei Zhang
AI4CE
221
36
0
19 Oct 2022
Efficient Learning of Mesh-Based Physical Simulation with BSMS-GNN
Efficient Learning of Mesh-Based Physical Simulation with BSMS-GNN
Yadi Cao
Menglei Chai
Minchen Li
Chenfanfu Jiang
AI4CE
144
33
0
05 Oct 2022
Neural Integral Equations
Neural Integral Equations
E. Zappala
Antonio H. O. Fonseca
J. O. Caro
David van Dijk
100
15
0
30 Sep 2022
Physics-informed Deep Super-resolution for Spatiotemporal Data
Physics-informed Deep Super-resolution for Spatiotemporal Data
Pu Ren
Chengping Rao
Yang Liu
Zihan Ma
Qi Wang
Jianxin Wang
Hao Sun
130
13
0
02 Aug 2022
LordNet: An Efficient Neural Network for Learning to Solve Parametric
  Partial Differential Equations without Simulated Data
LordNet: An Efficient Neural Network for Learning to Solve Parametric Partial Differential Equations without Simulated Data
Xinquan Huang
Wenlei Shi
Xiaotian Gao
Xinran Wei
Jia Zhang
Jiang Bian
Mao Yang
Tie-Yan Liu
PINN
101
14
0
19 Jun 2022
Seeing the forest and the tree: Building representations of both
  individual and collective dynamics with transformers
Seeing the forest and the tree: Building representations of both individual and collective dynamics with transformers
Ran Liu
Mehdi Azabou
M. Dabagia
Jingyun Xiao
Eva L. Dyer
AI4CE
127
20
0
10 Jun 2022
Transformer for Partial Differential Equations' Operator Learning
Transformer for Partial Differential Equations' Operator Learning
Zijie Li
Kazem Meidani
A. Farimani
165
192
0
26 May 2022
Predicting Physics in Mesh-reduced Space with Temporal Attention
Predicting Physics in Mesh-reduced Space with Temporal Attention
Xu Han
Han Gao
Tobias Pfaff
Jian-Xun Wang
Liping Liu
AI4CE
157
88
0
22 Jan 2022
GrADE: A graph based data-driven solver for time-dependent nonlinear
  partial differential equations
GrADE: A graph based data-driven solver for time-dependent nonlinear partial differential equations
Y. Kumar
S. Chakraborty
82
8
0
24 Aug 2021
Is attention to bounding boxes all you need for pedestrian action
  prediction?
Is attention to bounding boxes all you need for pedestrian action prediction?
Lina Achaji
Julien Moreau
Thibault Fouqueray
François Aioun
François Charpillet
113
38
0
16 Jul 2021
PhyCRNet: Physics-informed Convolutional-Recurrent Network for Solving
  Spatiotemporal PDEs
PhyCRNet: Physics-informed Convolutional-Recurrent Network for Solving Spatiotemporal PDEs
Pu Ren
Chengping Rao
Yang Liu
Jianxun Wang
Hao Sun
DiffMAI4CE
172
219
0
26 Jun 2021
Learning effective stochastic differential equations from microscopic
  simulations: linking stochastic numerics to deep learning
Learning effective stochastic differential equations from microscopic simulations: linking stochastic numerics to deep learning
Felix Dietrich
Alexei Makeev
George A. Kevrekidis
N. Evangelou
Tom S. Bertalan
Sebastian Reich
Ioannis G. Kevrekidis
DiffM
146
45
0
10 Jun 2021
Encoding physics to learn reaction-diffusion processes
Encoding physics to learn reaction-diffusion processes
Chengping Rao
Pu Ren
Qi Wang
O. Buyukozturk
Haoqin Sun
Yang Liu
PINNAI4CEDiffM
166
110
0
09 Jun 2021
CKNet: A Convolutional Neural Network Based on Koopman Operator for
  Modeling Latent Dynamics from Pixels
CKNet: A Convolutional Neural Network Based on Koopman Operator for Modeling Latent Dynamics from Pixels
Yongqian Xiao
Xin Xu
Yifei Shi
71
9
0
19 Feb 2021
State estimation with limited sensors -- A deep learning based approach
State estimation with limited sensors -- A deep learning based approach
Y. Kumar
Pranav Bahl
S. Chakraborty
74
30
0
27 Jan 2021
A deep learning modeling framework to capture mixing patterns in
  reactive-transport systems
A deep learning modeling framework to capture mixing patterns in reactive-transport systems
N. V. Jagtap
M. Mudunuru
K. Nakshatrala
50
5
0
11 Jan 2021
Previous
12