ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.04663
  4. Cited By
Physical invariance in neural networks for subgrid-scale scalar flux
  modeling

Physical invariance in neural networks for subgrid-scale scalar flux modeling

9 October 2020
Hugo Frezat
G. Balarac
Julien Le Sommer
Ronan Fablet
Redouane Lguensat
    AI4CE
ArXivPDFHTML

Papers citing "Physical invariance in neural networks for subgrid-scale scalar flux modeling"

4 / 4 papers shown
Title
Explaining the physics of transfer learning a data-driven subgrid-scale
  closure to a different turbulent flow
Explaining the physics of transfer learning a data-driven subgrid-scale closure to a different turbulent flow
Adam Subel
Yifei Guan
A. Chattopadhyay
P. Hassanzadeh
AI4CE
29
41
0
07 Jun 2022
A posteriori learning for quasi-geostrophic turbulence parametrization
A posteriori learning for quasi-geostrophic turbulence parametrization
Hugo Frezat
Julien Le Sommer
Ronan Fablet
G. Balarac
Redouane Lguensat
27
56
0
08 Apr 2022
Bounded nonlinear forecasts of partially observed geophysical systems
  with physics-constrained deep learning
Bounded nonlinear forecasts of partially observed geophysical systems with physics-constrained deep learning
Said Ouala
Steven L. Brunton
A. Pascual
Bertrand Chapron
F. Collard
L. Gaultier
Ronan Fablet
PINN
AI4TS
AI4CE
18
10
0
11 Feb 2022
A posteriori learning of quasi-geostrophic turbulence parametrization:
  an experiment on integration steps
A posteriori learning of quasi-geostrophic turbulence parametrization: an experiment on integration steps
Hugo Frezat
Julien Le Sommer
Ronan Fablet
G. Balarac
Redouane Lguensat
33
2
0
12 Nov 2021
1