ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.05380
  4. Cited By
Efficient Wasserstein Natural Gradients for Reinforcement Learning
v1v2v3v4 (latest)

Efficient Wasserstein Natural Gradients for Reinforcement Learning

12 October 2020
Theodore H. Moskovitz
Michael Arbel
Ferenc Huszár
Arthur Gretton
ArXiv (abs)PDFHTML

Papers citing "Efficient Wasserstein Natural Gradients for Reinforcement Learning"

19 / 19 papers shown
Title
Constrained Sliced Wasserstein Embedding
Constrained Sliced Wasserstein Embedding
Navid Naderializadeh
Darian Salehi
Hengrong Du
Soheil Kolouri
106
4
0
02 Jun 2025
Wasserstein Policy Optimization
Wasserstein Policy Optimization
David Pfau
Ian Davies
Diana Borsa
Joao G. M. Araujo
Brendan D. Tracey
H. V. Hasselt
180
2
0
01 May 2025
A Conservative Approach for Few-Shot Transfer in Off-Dynamics
  Reinforcement Learning
A Conservative Approach for Few-Shot Transfer in Off-Dynamics Reinforcement Learning
Paul Daoudi
Christophe Prieur
Bogdan Robu
M. Barlier
Ludovic Dos Santos
OffRL
126
1
0
24 Dec 2023
Confronting Reward Model Overoptimization with Constrained RLHF
Confronting Reward Model Overoptimization with Constrained RLHF
Ted Moskovitz
Aaditya K. Singh
DJ Strouse
Tuomas Sandholm
Ruslan Salakhutdinov
Anca D. Dragan
Alexander Shmakov
179
67
0
06 Oct 2023
A State Representation for Diminishing Rewards
A State Representation for Diminishing RewardsNeural Information Processing Systems (NeurIPS), 2023
Ted Moskovitz
Samo Hromadka
Ahmed Touati
Diana Borsa
M. Sahani
89
2
0
07 Sep 2023
Wasserstein Diversity-Enriched Regularizer for Hierarchical
  Reinforcement Learning
Wasserstein Diversity-Enriched Regularizer for Hierarchical Reinforcement LearningInternational Conference on Neural Information Processing (ICONIP), 2023
Haorui Li
Jiaqi Liang
Linjing Li
D. Zeng
58
0
0
02 Aug 2023
Provably Convergent Policy Optimization via Metric-aware Trust Region
  Methods
Provably Convergent Policy Optimization via Metric-aware Trust Region Methods
Jun Song
Niao He
Lijun Ding
Chaoyue Zhao
167
3
0
25 Jun 2023
Wasserstein Gradient Flows for Optimizing Gaussian Mixture Policies
Wasserstein Gradient Flows for Optimizing Gaussian Mixture PoliciesNeural Information Processing Systems (NeurIPS), 2023
Hanna Ziesche
Leonel Rozo
140
9
0
17 May 2023
The Geometry of Neural Nets' Parameter Spaces Under Reparametrization
The Geometry of Neural Nets' Parameter Spaces Under ReparametrizationNeural Information Processing Systems (NeurIPS), 2023
Agustinus Kristiadi
Felix Dangel
Philipp Hennig
136
16
0
14 Feb 2023
ReLOAD: Reinforcement Learning with Optimistic Ascent-Descent for
  Last-Iterate Convergence in Constrained MDPs
ReLOAD: Reinforcement Learning with Optimistic Ascent-Descent for Last-Iterate Convergence in Constrained MDPsInternational Conference on Machine Learning (ICML), 2023
Theodore H. Moskovitz
Brendan O'Donoghue
Vivek Veeriah
Sebastian Flennerhag
Satinder Singh
Tom Zahavy
169
23
0
02 Feb 2023
Transfer RL via the Undo Maps Formalism
Transfer RL via the Undo Maps Formalism
Abhi Gupta
Theodore H. Moskovitz
David Alvarez-Melis
Aldo Pacchiano
OffRL
101
0
0
26 Nov 2022
Geometry and convergence of natural policy gradient methods
Geometry and convergence of natural policy gradient methodsInformation Geometry (IG), 2022
Johannes Muller
Guido Montúfar
143
13
0
03 Nov 2022
Learning General World Models in a Handful of Reward-Free Deployments
Learning General World Models in a Handful of Reward-Free DeploymentsNeural Information Processing Systems (NeurIPS), 2022
Yingchen Xu
Jack Parker-Holder
Aldo Pacchiano
Philip J. Ball
Oleh Rybkin
Stephen J. Roberts
Tim Rocktaschel
Edward Grefenstette
OffRL
175
10
0
23 Oct 2022
Trust Region Policy Optimization with Optimal Transport Discrepancies:
  Duality and Algorithm for Continuous Actions
Trust Region Policy Optimization with Optimal Transport Discrepancies: Duality and Algorithm for Continuous ActionsNeural Information Processing Systems (NeurIPS), 2022
Antonio Terpin
Nicolas Lanzetti
Batuhan Yardim
Florian Dorfler
Giorgia Ramponi
92
8
0
20 Oct 2022
Minimum Description Length Control
Minimum Description Length ControlInternational Conference on Learning Representations (ICLR), 2022
Theodore H. Moskovitz
Ta-Chu Kao
M. Sahani
M. Botvinick
140
1
0
17 Jul 2022
Towards an Understanding of Default Policies in Multitask Policy
  Optimization
Towards an Understanding of Default Policies in Multitask Policy OptimizationInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2021
Theodore H. Moskovitz
Michael Arbel
Jack Parker-Holder
Aldo Pacchiano
182
10
0
04 Nov 2021
A First-Occupancy Representation for Reinforcement Learning
A First-Occupancy Representation for Reinforcement Learning
Theodore H. Moskovitz
S. Wilson
M. Sahani
205
16
0
28 Sep 2021
MICo: Improved representations via sampling-based state similarity for
  Markov decision processes
MICo: Improved representations via sampling-based state similarity for Markov decision processesNeural Information Processing Systems (NeurIPS), 2021
Pablo Samuel Castro
Tyler Kastner
Prakash Panangaden
Mark Rowland
213
42
0
03 Jun 2021
Tactical Optimism and Pessimism for Deep Reinforcement Learning
Tactical Optimism and Pessimism for Deep Reinforcement LearningNeural Information Processing Systems (NeurIPS), 2021
Theodore H. Moskovitz
Jack Parker-Holder
Aldo Pacchiano
Michael Arbel
Sai Li
203
65
0
07 Feb 2021
1