ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.06808
  4. Cited By
Just Pick a Sign: Optimizing Deep Multitask Models with Gradient Sign
  Dropout

Just Pick a Sign: Optimizing Deep Multitask Models with Gradient Sign Dropout

14 October 2020
Zhao Chen
Jiquan Ngiam
Yanping Huang
Thang Luong
Henrik Kretzschmar
Yuning Chai
Dragomir Anguelov
ArXivPDFHTML

Papers citing "Just Pick a Sign: Optimizing Deep Multitask Models with Gradient Sign Dropout"

50 / 136 papers shown
Title
Smooth Tchebycheff Scalarization for Multi-Objective Optimization
Smooth Tchebycheff Scalarization for Multi-Objective Optimization
Xi Lin
Xiao-Yan Zhang
Zhiyuan Yang
Fei Liu
Zhenkun Wang
Qingfu Zhang
35
16
0
29 Feb 2024
InterroGate: Learning to Share, Specialize, and Prune Representations
  for Multi-task Learning
InterroGate: Learning to Share, Specialize, and Prune Representations for Multi-task Learning
B. Bejnordi
Gaurav Kumar
Amelie Royer
Christos Louizos
Tijmen Blankevoort
Mohsen Ghafoorian
CVBM
39
0
0
26 Feb 2024
Fair Resource Allocation in Multi-Task Learning
Fair Resource Allocation in Multi-Task Learning
Hao Ban
Kaiyi Ji
27
10
0
23 Feb 2024
Acquiring Clean Language Models from Backdoor Poisoned Datasets by
  Downscaling Frequency Space
Acquiring Clean Language Models from Backdoor Poisoned Datasets by Downscaling Frequency Space
Zongru Wu
Zhuosheng Zhang
Pengzhou Cheng
Gongshen Liu
AAML
44
4
0
19 Feb 2024
Robust Analysis of Multi-Task Learning Efficiency: New Benchmarks on
  Light-Weighed Backbones and Effective Measurement of Multi-Task Learning
  Challenges by Feature Disentanglement
Robust Analysis of Multi-Task Learning Efficiency: New Benchmarks on Light-Weighed Backbones and Effective Measurement of Multi-Task Learning Challenges by Feature Disentanglement
Dayou Mao
Yuhao Chen
Yifan Wu
Maximilian Gilles
Alexander Wong
AAML
38
0
0
05 Feb 2024
Representation Surgery for Multi-Task Model Merging
Representation Surgery for Multi-Task Model Merging
Enneng Yang
Li Shen
Zhenyi Wang
Guibing Guo
Xiaojun Chen
Xingwei Wang
Dacheng Tao
MoMe
54
37
0
05 Feb 2024
Robust Multi-Task Learning with Excess Risks
Robust Multi-Task Learning with Excess Risks
Yifei He
Shiji Zhou
Guojun Zhang
Hyokun Yun
Yi Tian Xu
Belinda Zeng
Trishul M. Chilimbi
Han Zhao
53
7
0
03 Feb 2024
A First-Order Multi-Gradient Algorithm for Multi-Objective Bi-Level
  Optimization
A First-Order Multi-Gradient Algorithm for Multi-Objective Bi-Level Optimization
Feiyang Ye
Baijiong Lin
Xiao-Qun Cao
Yu Zhang
Ivor Tsang
47
6
0
17 Jan 2024
Elastic Multi-Gradient Descent for Parallel Continual Learning
Elastic Multi-Gradient Descent for Parallel Continual Learning
Fan Lyu
Wei Feng
Yuepan Li
Qing Sun
Fanhua Shang
Liang Wan
Liang Wang
27
2
0
02 Jan 2024
FedHCA$^2$: Towards Hetero-Client Federated Multi-Task Learning
FedHCA2^22: Towards Hetero-Client Federated Multi-Task Learning
Yuxiang Lu
Suizhi Huang
Yuwen Yang
Shalayiding Sirejiding
Yue Ding
Hongtao Lu
FedML
44
3
0
22 Nov 2023
Examining Common Paradigms in Multi-Task Learning
Examining Common Paradigms in Multi-Task Learning
Cathrin Elich
Lukas Kirchdorfer
Jan M. Kohler
Lukas Schott
29
0
0
08 Nov 2023
Scalarization for Multi-Task and Multi-Domain Learning at Scale
Scalarization for Multi-Task and Multi-Domain Learning at Scale
Amelie Royer
Tijmen Blankevoort
B. Bejnordi
28
17
0
13 Oct 2023
Denoising Task Routing for Diffusion Models
Denoising Task Routing for Diffusion Models
Byeongjun Park
Sangmin Woo
Hyojun Go
Jin-Young Kim
Changick Kim
DiffM
14
18
0
11 Oct 2023
Factorized Tensor Networks for Multi-Task and Multi-Domain Learning
Factorized Tensor Networks for Multi-Task and Multi-Domain Learning
Yash Garg
Nebiyou Yismaw
Rakib Hyder
Ashley Prater-Bennette
M. Salman Asif
26
2
0
09 Oct 2023
AdaMerging: Adaptive Model Merging for Multi-Task Learning
AdaMerging: Adaptive Model Merging for Multi-Task Learning
Enneng Yang
Zhenyi Wang
Li Shen
Shiwei Liu
Guibing Guo
Xingwei Wang
Dacheng Tao
MoMe
33
95
0
04 Oct 2023
Multi-task Learning with 3D-Aware Regularization
Multi-task Learning with 3D-Aware Regularization
Weihong Li
Steven G. McDonagh
A. Leonardis
Hakan Bilen
26
3
0
02 Oct 2023
Multi-task View Synthesis with Neural Radiance Fields
Multi-task View Synthesis with Neural Radiance Fields
Shuhong Zheng
Zhipeng Bao
Martial Hebert
Yu-Xiong Wang
21
4
0
29 Sep 2023
Multi-Task Cooperative Learning via Searching for Flat Minima
Multi-Task Cooperative Learning via Searching for Flat Minima
Fuping Wu
Le Zhang
Yang Sun
Yuanhan Mo
Thomas Nichols
Bartłomiej W. Papież
19
1
0
21 Sep 2023
Revisiting Scalarization in Multi-Task Learning: A Theoretical
  Perspective
Revisiting Scalarization in Multi-Task Learning: A Theoretical Perspective
Yuzheng Hu
Ruicheng Xian
Qilong Wu
Qiuling Fan
Lang Yin
Han Zhao
27
39
0
27 Aug 2023
Dual-Balancing for Multi-Task Learning
Dual-Balancing for Multi-Task Learning
Baijiong Lin
Weisen Jiang
Feiyang Ye
Yu Zhang
Pengguang Chen
Yingke Chen
Shu Liu
James T. Kwok
CVBM
25
12
0
23 Aug 2023
OFVL-MS: Once for Visual Localization across Multiple Indoor Scenes
OFVL-MS: Once for Visual Localization across Multiple Indoor Scenes
Tao Xie
Kun Dai
Si-Tong Lu
K. Wang
Zhiqiang Jiang
Jin Gao
Dedong Liu
J. Xu
Lijun Zhao
Rui Li
50
9
0
23 Aug 2023
STEM: Unleashing the Power of Embeddings for Multi-task Recommendation
STEM: Unleashing the Power of Embeddings for Multi-task Recommendation
Liangcai Su
Junwei Pan
Ximei Wang
Xi Xiao
Shijie Quan
Xihua Chen
Jie Jiang
17
15
0
16 Aug 2023
Deformable Mixer Transformer with Gating for Multi-Task Learning of
  Dense Prediction
Deformable Mixer Transformer with Gating for Multi-Task Learning of Dense Prediction
Yangyang Xu
Yibo Yang
Bernard Ghanemm
L. Zhang
Du Bo
Dacheng Tao
13
1
0
10 Aug 2023
Improvable Gap Balancing for Multi-Task Learning
Improvable Gap Balancing for Multi-Task Learning
Yanqi Dai
Nanyi Fei
Zhiwu Lu
40
4
0
28 Jul 2023
TaskExpert: Dynamically Assembling Multi-Task Representations with
  Memorial Mixture-of-Experts
TaskExpert: Dynamically Assembling Multi-Task Representations with Memorial Mixture-of-Experts
Hanrong Ye
Dan Xu
MoE
36
26
0
28 Jul 2023
Regularized Mask Tuning: Uncovering Hidden Knowledge in Pre-trained
  Vision-Language Models
Regularized Mask Tuning: Uncovering Hidden Knowledge in Pre-trained Vision-Language Models
Kecheng Zheng
Wei Wu
Ruili Feng
Kai Zhu
Jiawei Liu
Deli Zhao
Zhengjun Zha
Wei Chen
Yujun Shen
VLM
19
8
0
27 Jul 2023
When Multi-Task Learning Meets Partial Supervision: A Computer Vision
  Review
When Multi-Task Learning Meets Partial Supervision: A Computer Vision Review
Maxime Fontana
Michael W. Spratling
Miaojing Shi
44
6
0
25 Jul 2023
Gradient Sparsification For Masked Fine-Tuning of Transformers
Gradient Sparsification For Masked Fine-Tuning of Transformers
J. Ó. Neill
Sourav Dutta
19
0
0
19 Jul 2023
Multi-task Item-attribute Graph Pre-training for Strict Cold-start Item
  Recommendation
Multi-task Item-attribute Graph Pre-training for Strict Cold-start Item Recommendation
Yuwei Cao
Liangwei Yang
Chen Wang
Zhiwei Liu
Hao Peng
Chenyu You
Philip S. Yu
18
21
0
26 Jun 2023
InvPT++: Inverted Pyramid Multi-Task Transformer for Visual Scene
  Understanding
InvPT++: Inverted Pyramid Multi-Task Transformer for Visual Scene Understanding
Hanrong Ye
Dan Xu
ViT
27
10
0
08 Jun 2023
Sample-Level Weighting for Multi-Task Learning with Auxiliary Tasks
Sample-Level Weighting for Multi-Task Learning with Auxiliary Tasks
Emilie Grégoire
M. H. Chaudhary
Sam Verboven
24
1
0
07 Jun 2023
FAMO: Fast Adaptive Multitask Optimization
FAMO: Fast Adaptive Multitask Optimization
B. Liu
Yihao Feng
Peter Stone
Qian Liu
33
30
0
06 Jun 2023
Biologically-Motivated Learning Model for Instructed Visual Processing
Biologically-Motivated Learning Model for Instructed Visual Processing
R. Abel
S. Ullman
20
0
0
04 Jun 2023
Addressing Negative Transfer in Diffusion Models
Addressing Negative Transfer in Diffusion Models
Hyojun Go
Jinyoung Kim
Yunsung Lee
Seunghyun Lee
Shinhyeok Oh
Hyeongdon Moon
Seungtaek Choi
DiffM
VLM
16
24
0
01 Jun 2023
Learning Task-preferred Inference Routes for Gradient De-conflict in
  Multi-output DNNs
Learning Task-preferred Inference Routes for Gradient De-conflict in Multi-output DNNs
Yi Sun
Xin Xu
J. Li
Xiaochang Hu
Yifei Shi
L. Zeng
19
2
0
31 May 2023
Independent Component Alignment for Multi-Task Learning
Independent Component Alignment for Multi-Task Learning
Dmitry Senushkin
Nikolay Patakin
Arseny Kuznetsov
Anton Konushin
CVBM
32
41
0
30 May 2023
Direction-oriented Multi-objective Learning: Simple and Provable
  Stochastic Algorithms
Direction-oriented Multi-objective Learning: Simple and Provable Stochastic Algorithms
Peiyao Xiao
Hao Ban
Kaiyi Ji
24
18
0
28 May 2023
Efficient Computation Sharing for Multi-Task Visual Scene Understanding
Efficient Computation Sharing for Multi-Task Visual Scene Understanding
Sara Shoouri
Mingyu Yang
Zichen Fan
Hun-Seok Kim
MoE
26
3
0
16 Mar 2023
Efficient Diffusion Training via Min-SNR Weighting Strategy
Efficient Diffusion Training via Min-SNR Weighting Strategy
Tiankai Hang
Shuyang Gu
Chen Li
Jianmin Bao
Dong Chen
Han Hu
Xin Geng
B. Guo
18
150
0
16 Mar 2023
RotoGBML: Towards Out-of-Distribution Generalization for Gradient-Based
  Meta-Learning
RotoGBML: Towards Out-of-Distribution Generalization for Gradient-Based Meta-Learning
Min Zhang
Zifeng Zhuang
Zhitao Wang
Donglin Wang
Wen-Bin Li
46
5
0
12 Mar 2023
Recon: Reducing Conflicting Gradients from the Root for Multi-Task
  Learning
Recon: Reducing Conflicting Gradients from the Root for Multi-Task Learning
Guangyuan Shi
Qimai Li
Wenlong Zhang
Jiaxin Chen
Xiao-Ming Wu
32
32
0
22 Feb 2023
Auxiliary Learning as an Asymmetric Bargaining Game
Auxiliary Learning as an Asymmetric Bargaining Game
Aviv Shamsian
Aviv Navon
Neta Glazer
Kenji Kawaguchi
Gal Chechik
Ethan Fetaya
35
8
0
31 Jan 2023
ForkMerge: Mitigating Negative Transfer in Auxiliary-Task Learning
ForkMerge: Mitigating Negative Transfer in Auxiliary-Task Learning
Junguang Jiang
Baixu Chen
Junwei Pan
Ximei Wang
Liu Dapeng
Jie Jiang
Mingsheng Long
MoMe
26
19
0
30 Jan 2023
Mod-Squad: Designing Mixture of Experts As Modular Multi-Task Learners
Mod-Squad: Designing Mixture of Experts As Modular Multi-Task Learners
Zitian Chen
Yikang Shen
Mingyu Ding
Zhenfang Chen
Hengshuang Zhao
E. Learned-Miller
Chuang Gan
MoE
11
14
0
15 Dec 2022
Do Text-to-Text Multi-Task Learners Suffer from Task Conflict?
Do Text-to-Text Multi-Task Learners Suffer from Task Conflict?
David Mueller
Nicholas Andrews
Mark Dredze
31
6
0
13 Dec 2022
AdaTask: A Task-aware Adaptive Learning Rate Approach to Multi-task
  Learning
AdaTask: A Task-aware Adaptive Learning Rate Approach to Multi-task Learning
Enneng Yang
Junwei Pan
Ximei Wang
Haibin Yu
Li Shen
Xihua Chen
Lei Xiao
Jie Jiang
G. Guo
38
43
0
28 Nov 2022
Improving Multi-task Learning via Seeking Task-based Flat Regions
Improving Multi-task Learning via Seeking Task-based Flat Regions
Hoang Phan
Lam C. Tran
Ngoc N. Tran
Nhat Ho
Dinh Q. Phung
Trung Le
25
10
0
24 Nov 2022
M$^3$ViT: Mixture-of-Experts Vision Transformer for Efficient Multi-task
  Learning with Model-Accelerator Co-design
M3^33ViT: Mixture-of-Experts Vision Transformer for Efficient Multi-task Learning with Model-Accelerator Co-design
Hanxue Liang
Zhiwen Fan
Rishov Sarkar
Ziyu Jiang
Tianlong Chen
Kai Zou
Yu Cheng
Cong Hao
Zhangyang Wang
MoE
31
81
0
26 Oct 2022
Mitigating Gradient Bias in Multi-objective Learning: A Provably
  Convergent Stochastic Approach
Mitigating Gradient Bias in Multi-objective Learning: A Provably Convergent Stochastic Approach
H. Fernando
Han Shen
Miao Liu
Subhajit Chaudhury
K. Murugesan
Tianyi Chen
23
8
0
23 Oct 2022
Pareto Manifold Learning: Tackling multiple tasks via ensembles of
  single-task models
Pareto Manifold Learning: Tackling multiple tasks via ensembles of single-task models
Nikolaos Dimitriadis
P. Frossard
Franccois Fleuret
16
25
0
18 Oct 2022
Previous
123
Next