ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.06812
  4. Cited By
Explain2Attack: Text Adversarial Attacks via Cross-Domain
  Interpretability
v1v2v3v4 (latest)

Explain2Attack: Text Adversarial Attacks via Cross-Domain Interpretability

14 October 2020
M. Hossam
Trung Le
He Zhao
Dinh Q. Phung
    SILMAAML
ArXiv (abs)PDFHTML

Papers citing "Explain2Attack: Text Adversarial Attacks via Cross-Domain Interpretability"

4 / 4 papers shown
Title
BufferSearch: Generating Black-Box Adversarial Texts With Lower Queries
BufferSearch: Generating Black-Box Adversarial Texts With Lower Queries
Wenjie Lv
Zhen Wang
Yitao Zheng
Zhehua Zhong
Qi Xuan
Tianyi Chen
AAML
78
1
0
14 Oct 2023
Interpretation of Black Box NLP Models: A Survey
Interpretation of Black Box NLP Models: A Survey
Shivani Choudhary
N. Chatterjee
S. K. Saha
FAtt
86
11
0
31 Mar 2022
When and How to Fool Explainable Models (and Humans) with Adversarial
  Examples
When and How to Fool Explainable Models (and Humans) with Adversarial Examples
Jon Vadillo
Roberto Santana
Jose A. Lozano
SILMAAML
95
13
0
05 Jul 2021
Improved and Efficient Text Adversarial Attacks using Target Information
Improved and Efficient Text Adversarial Attacks using Target Information
M. Hossam
Trung Le
He Zhao
Viet Huynh
Dinh Q. Phung
AAML
38
1
0
27 Apr 2021
1