ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.07830
  4. Cited By
Semi-Supervised Semantic Segmentation in Earth Observation: The
  MiniFrance Suite, Dataset Analysis and Multi-task Network Study

Semi-Supervised Semantic Segmentation in Earth Observation: The MiniFrance Suite, Dataset Analysis and Multi-task Network Study

15 October 2020
J. Castillo-Navarro
Bertrand Le Saux
Alexandre Boulch
Nicolas Audebert
Sébastien Lefèvre
ArXivPDFHTML

Papers citing "Semi-Supervised Semantic Segmentation in Earth Observation: The MiniFrance Suite, Dataset Analysis and Multi-task Network Study"

4 / 4 papers shown
Title
Towards Efficient Benchmarking of Foundation Models in Remote Sensing: A Capabilities Encoding Approach
Towards Efficient Benchmarking of Foundation Models in Remote Sensing: A Capabilities Encoding Approach
Pierre Adorni
M. Pham
Stéphane May
Sébastien Lefèvre
51
0
0
06 May 2025
Better, Not Just More: Data-Centric Machine Learning for Earth Observation
Better, Not Just More: Data-Centric Machine Learning for Earth Observation
R. Roscher
M. Rußwurm
Caroline Gevaert
Michael C. Kampffmeyer
J. A. dos Santos
...
Ronny Hansch
Stine Hansen
Keiller Nogueira
Jonathan Prexl
D. Tuia
32
10
0
08 Dec 2023
Cloud Detection in Multispectral Satellite Images Using Support Vector
  Machines With Quantum Kernels
Cloud Detection in Multispectral Satellite Images Using Support Vector Machines With Quantum Kernels
Artur Miroszewski
Jakub Mielczarek
Filip Szczepanek
G. Czelusta
B. Grabowski
Bertrand Le Saux
J. Nalepa
14
3
0
14 Jul 2023
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image
  Segmentation
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
Vijay Badrinarayanan
Alex Kendall
R. Cipolla
SSeg
446
15,637
0
02 Nov 2015
1