ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.09063
  4. Cited By
Enabling Fast Differentially Private SGD via Just-in-Time Compilation
  and Vectorization

Enabling Fast Differentially Private SGD via Just-in-Time Compilation and Vectorization

18 October 2020
P. Subramani
Nicholas Vadivelu
Gautam Kamath
ArXivPDFHTML

Papers citing "Enabling Fast Differentially Private SGD via Just-in-Time Compilation and Vectorization"

25 / 25 papers shown
Title
A Tale of Two Imperatives: Privacy and Explainability
A Tale of Two Imperatives: Privacy and Explainability
Supriya Manna
Niladri Sett
94
0
0
30 Dec 2024
Training Large ASR Encoders with Differential Privacy
Training Large ASR Encoders with Differential Privacy
Geeticka Chauhan
Steve Chien
Om Thakkar
Abhradeep Thakurta
Arun Narayanan
33
1
0
21 Sep 2024
Universally Harmonizing Differential Privacy Mechanisms for Federated
  Learning: Boosting Accuracy and Convergence
Universally Harmonizing Differential Privacy Mechanisms for Federated Learning: Boosting Accuracy and Convergence
Shuya Feng
Meisam Mohammady
Hanbin Hong
Shenao Yan
Ashish Kundu
Binghui Wang
Yuan Hong
FedML
38
3
0
20 Jul 2024
Delving into Differentially Private Transformer
Delving into Differentially Private Transformer
Youlong Ding
Xueyang Wu
Yining Meng
Yonggang Luo
Hao Wang
Weike Pan
33
5
0
28 May 2024
DP-NMT: Scalable Differentially-Private Machine Translation
DP-NMT: Scalable Differentially-Private Machine Translation
Timour Igamberdiev
Doan Nam Long Vu
Felix Künnecke
Zhuo Yu
Jannik Holmer
Ivan Habernal
31
7
0
24 Nov 2023
Differentially Private Adaptive Optimization with Delayed
  Preconditioners
Differentially Private Adaptive Optimization with Delayed Preconditioners
Tian Li
Manzil Zaheer
Ziyu Liu
Sashank J. Reddi
H. B. McMahan
Virginia Smith
37
10
0
01 Dec 2022
Differentially Private Image Classification from Features
Differentially Private Image Classification from Features
Harsh Mehta
Walid Krichene
Abhradeep Thakurta
Alexey Kurakin
Ashok Cutkosky
52
7
0
24 Nov 2022
Private Multi-Winner Voting for Machine Learning
Private Multi-Winner Voting for Machine Learning
Adam Dziedzic
Christopher A. Choquette-Choo
Natalie Dullerud
Vinith M. Suriyakumar
Ali Shahin Shamsabadi
Muhammad Ahmad Kaleem
S. Jha
Nicolas Papernot
Xiao Wang
37
1
0
23 Nov 2022
Private Ad Modeling with DP-SGD
Private Ad Modeling with DP-SGD
Carson E. Denison
Badih Ghazi
Pritish Kamath
Ravi Kumar
Pasin Manurangsi
Krishnagiri Narra
Amer Sinha
A. Varadarajan
Chiyuan Zhang
27
14
0
21 Nov 2022
Synthetic Text Generation with Differential Privacy: A Simple and
  Practical Recipe
Synthetic Text Generation with Differential Privacy: A Simple and Practical Recipe
Xiang Yue
Huseyin A. Inan
Xuechen Li
Girish Kumar
Julia McAnallen
Hoda Shajari
Huan Sun
David Levitan
Robert Sim
44
79
0
25 Oct 2022
DPIS: An Enhanced Mechanism for Differentially Private SGD with
  Importance Sampling
DPIS: An Enhanced Mechanism for Differentially Private SGD with Importance Sampling
Jianxin Wei
Ergute Bao
X. Xiao
Y. Yang
41
20
0
18 Oct 2022
Differentially Private Optimization on Large Model at Small Cost
Differentially Private Optimization on Large Model at Small Cost
Zhiqi Bu
Yu-Xiang Wang
Sheng Zha
George Karypis
35
52
0
30 Sep 2022
On Privacy and Personalization in Cross-Silo Federated Learning
On Privacy and Personalization in Cross-Silo Federated Learning
Ziyu Liu
Shengyuan Hu
Zhiwei Steven Wu
Virginia Smith
FedML
22
51
0
16 Jun 2022
Toward Training at ImageNet Scale with Differential Privacy
Toward Training at ImageNet Scale with Differential Privacy
Alexey Kurakin
Shuang Song
Steve Chien
Roxana Geambasu
Andreas Terzis
Abhradeep Thakurta
33
100
0
28 Jan 2022
Differentially Private Fine-tuning of Language Models
Differentially Private Fine-tuning of Language Models
Da Yu
Saurabh Naik
A. Backurs
Sivakanth Gopi
Huseyin A. Inan
...
Y. Lee
Andre Manoel
Lukas Wutschitz
Sergey Yekhanin
Huishuai Zhang
134
346
0
13 Oct 2021
Opacus: User-Friendly Differential Privacy Library in PyTorch
Opacus: User-Friendly Differential Privacy Library in PyTorch
Ashkan Yousefpour
I. Shilov
Alexandre Sablayrolles
Davide Testuggine
Karthik Prasad
...
Sayan Gosh
Akash Bharadwaj
Jessica Zhao
Graham Cormode
Ilya Mironov
VLM
152
349
0
25 Sep 2021
NanoBatch Privacy: Enabling fast Differentially Private learning on the
  IPU
NanoBatch Privacy: Enabling fast Differentially Private learning on the IPU
Edward H. Lee
M. M. Krell
Alexander Tsyplikhin
Victoria Rege
E. Colak
Kristen W. Yeom
FedML
21
0
0
24 Sep 2021
Large-Scale Differentially Private BERT
Large-Scale Differentially Private BERT
Rohan Anil
Badih Ghazi
Vineet Gupta
Ravi Kumar
Pasin Manurangsi
33
131
0
03 Aug 2021
Privacy Regularization: Joint Privacy-Utility Optimization in Language
  Models
Privacy Regularization: Joint Privacy-Utility Optimization in Language Models
Fatemehsadat Mireshghallah
Huseyin A. Inan
Marcello Hasegawa
Victor Rühle
Taylor Berg-Kirkpatrick
Robert Sim
16
39
0
12 Mar 2021
Deep Learning with Label Differential Privacy
Deep Learning with Label Differential Privacy
Badih Ghazi
Noah Golowich
Ravi Kumar
Pasin Manurangsi
Chiyuan Zhang
39
144
0
11 Feb 2021
Fast and Memory Efficient Differentially Private-SGD via JL Projections
Fast and Memory Efficient Differentially Private-SGD via JL Projections
Zhiqi Bu
Sivakanth Gopi
Janardhan Kulkarni
Y. Lee
J. Shen
U. Tantipongpipat
FedML
24
41
0
05 Feb 2021
Tempered Sigmoid Activations for Deep Learning with Differential Privacy
Tempered Sigmoid Activations for Deep Learning with Differential Privacy
Nicolas Papernot
Abhradeep Thakurta
Shuang Song
Steve Chien
Ulfar Erlingsson
AAML
139
178
0
28 Jul 2020
Privately Learning High-Dimensional Distributions
Privately Learning High-Dimensional Distributions
Gautam Kamath
Jerry Li
Vikrant Singhal
Jonathan R. Ullman
FedML
69
148
0
01 May 2018
Prochlo: Strong Privacy for Analytics in the Crowd
Prochlo: Strong Privacy for Analytics in the Crowd
Andrea Bittau
Ulfar Erlingsson
Petros Maniatis
Ilya Mironov
A. Raghunathan
David Lie
Mitch Rudominer
Ushasree Kode
J. Tinnés
B. Seefeld
91
278
0
02 Oct 2017
Efficient Per-Example Gradient Computations
Efficient Per-Example Gradient Computations
Ian Goodfellow
186
74
0
07 Oct 2015
1