Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2010.09063
Cited By
Enabling Fast Differentially Private SGD via Just-in-Time Compilation and Vectorization
18 October 2020
P. Subramani
Nicholas Vadivelu
Gautam Kamath
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Enabling Fast Differentially Private SGD via Just-in-Time Compilation and Vectorization"
25 / 25 papers shown
Title
A Tale of Two Imperatives: Privacy and Explainability
Supriya Manna
Niladri Sett
94
0
0
30 Dec 2024
Training Large ASR Encoders with Differential Privacy
Geeticka Chauhan
Steve Chien
Om Thakkar
Abhradeep Thakurta
Arun Narayanan
33
1
0
21 Sep 2024
Universally Harmonizing Differential Privacy Mechanisms for Federated Learning: Boosting Accuracy and Convergence
Shuya Feng
Meisam Mohammady
Hanbin Hong
Shenao Yan
Ashish Kundu
Binghui Wang
Yuan Hong
FedML
38
3
0
20 Jul 2024
Delving into Differentially Private Transformer
Youlong Ding
Xueyang Wu
Yining Meng
Yonggang Luo
Hao Wang
Weike Pan
33
5
0
28 May 2024
DP-NMT: Scalable Differentially-Private Machine Translation
Timour Igamberdiev
Doan Nam Long Vu
Felix Künnecke
Zhuo Yu
Jannik Holmer
Ivan Habernal
31
7
0
24 Nov 2023
Differentially Private Adaptive Optimization with Delayed Preconditioners
Tian Li
Manzil Zaheer
Ziyu Liu
Sashank J. Reddi
H. B. McMahan
Virginia Smith
37
10
0
01 Dec 2022
Differentially Private Image Classification from Features
Harsh Mehta
Walid Krichene
Abhradeep Thakurta
Alexey Kurakin
Ashok Cutkosky
52
7
0
24 Nov 2022
Private Multi-Winner Voting for Machine Learning
Adam Dziedzic
Christopher A. Choquette-Choo
Natalie Dullerud
Vinith M. Suriyakumar
Ali Shahin Shamsabadi
Muhammad Ahmad Kaleem
S. Jha
Nicolas Papernot
Xiao Wang
37
1
0
23 Nov 2022
Private Ad Modeling with DP-SGD
Carson E. Denison
Badih Ghazi
Pritish Kamath
Ravi Kumar
Pasin Manurangsi
Krishnagiri Narra
Amer Sinha
A. Varadarajan
Chiyuan Zhang
27
14
0
21 Nov 2022
Synthetic Text Generation with Differential Privacy: A Simple and Practical Recipe
Xiang Yue
Huseyin A. Inan
Xuechen Li
Girish Kumar
Julia McAnallen
Hoda Shajari
Huan Sun
David Levitan
Robert Sim
44
79
0
25 Oct 2022
DPIS: An Enhanced Mechanism for Differentially Private SGD with Importance Sampling
Jianxin Wei
Ergute Bao
X. Xiao
Y. Yang
41
20
0
18 Oct 2022
Differentially Private Optimization on Large Model at Small Cost
Zhiqi Bu
Yu-Xiang Wang
Sheng Zha
George Karypis
35
52
0
30 Sep 2022
On Privacy and Personalization in Cross-Silo Federated Learning
Ziyu Liu
Shengyuan Hu
Zhiwei Steven Wu
Virginia Smith
FedML
22
51
0
16 Jun 2022
Toward Training at ImageNet Scale with Differential Privacy
Alexey Kurakin
Shuang Song
Steve Chien
Roxana Geambasu
Andreas Terzis
Abhradeep Thakurta
33
100
0
28 Jan 2022
Differentially Private Fine-tuning of Language Models
Da Yu
Saurabh Naik
A. Backurs
Sivakanth Gopi
Huseyin A. Inan
...
Y. Lee
Andre Manoel
Lukas Wutschitz
Sergey Yekhanin
Huishuai Zhang
134
346
0
13 Oct 2021
Opacus: User-Friendly Differential Privacy Library in PyTorch
Ashkan Yousefpour
I. Shilov
Alexandre Sablayrolles
Davide Testuggine
Karthik Prasad
...
Sayan Gosh
Akash Bharadwaj
Jessica Zhao
Graham Cormode
Ilya Mironov
VLM
152
349
0
25 Sep 2021
NanoBatch Privacy: Enabling fast Differentially Private learning on the IPU
Edward H. Lee
M. M. Krell
Alexander Tsyplikhin
Victoria Rege
E. Colak
Kristen W. Yeom
FedML
21
0
0
24 Sep 2021
Large-Scale Differentially Private BERT
Rohan Anil
Badih Ghazi
Vineet Gupta
Ravi Kumar
Pasin Manurangsi
33
131
0
03 Aug 2021
Privacy Regularization: Joint Privacy-Utility Optimization in Language Models
Fatemehsadat Mireshghallah
Huseyin A. Inan
Marcello Hasegawa
Victor Rühle
Taylor Berg-Kirkpatrick
Robert Sim
16
39
0
12 Mar 2021
Deep Learning with Label Differential Privacy
Badih Ghazi
Noah Golowich
Ravi Kumar
Pasin Manurangsi
Chiyuan Zhang
39
144
0
11 Feb 2021
Fast and Memory Efficient Differentially Private-SGD via JL Projections
Zhiqi Bu
Sivakanth Gopi
Janardhan Kulkarni
Y. Lee
J. Shen
U. Tantipongpipat
FedML
24
41
0
05 Feb 2021
Tempered Sigmoid Activations for Deep Learning with Differential Privacy
Nicolas Papernot
Abhradeep Thakurta
Shuang Song
Steve Chien
Ulfar Erlingsson
AAML
139
178
0
28 Jul 2020
Privately Learning High-Dimensional Distributions
Gautam Kamath
Jerry Li
Vikrant Singhal
Jonathan R. Ullman
FedML
69
148
0
01 May 2018
Prochlo: Strong Privacy for Analytics in the Crowd
Andrea Bittau
Ulfar Erlingsson
Petros Maniatis
Ilya Mironov
A. Raghunathan
David Lie
Mitch Rudominer
Ushasree Kode
J. Tinnés
B. Seefeld
91
278
0
02 Oct 2017
Efficient Per-Example Gradient Computations
Ian Goodfellow
186
74
0
07 Oct 2015
1