Papers
Communities
Organizations
Events
Blog
Pricing
Feedback
Contact Sales
Search
Open menu
Home
Papers
2010.09929
Cited By
On the Sample Complexity of Privately Learning Unbounded High-Dimensional Gaussians
19 October 2020
Ishaq Aden-Ali
H. Ashtiani
Gautam Kamath
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"On the Sample Complexity of Privately Learning Unbounded High-Dimensional Gaussians"
37 / 37 papers shown
Title
Private Training & Data Generation by Clustering Embeddings
Felix Y. Zhou
Samson Zhou
Vahab Mirrokni
Alessandro Epasto
Vincent Cohen-Addad
74
0
0
20 Jun 2025
Nearly-Linear Time Private Hypothesis Selection with the Optimal Approximation Factor
Maryam Aliakbarpour
Zhan Shi
Ria Stevens
Vincent X. Wang
76
1
0
01 Jun 2025
A Private Approximation of the 2nd-Moment Matrix of Any Subsamplable Input
Bar Mahpud
Or Sheffet
52
0
0
20 May 2025
Optimal Differentially Private Sampling of Unbounded Gaussians
Valentio Iverson
Gautam Kamath
Argyris Mouzakis
142
0
0
03 Mar 2025
Learning with Differentially Private (Sliced) Wasserstein Gradients
David Rodríguez-Vítores
Clément Lalanne
Jean-Michel Loubes
FedML
161
0
0
03 Feb 2025
Dimension-free Private Mean Estimation for Anisotropic Distributions
Yuval Dagan
Michael I. Jordan
Xuelin Yang
Lydia Zakynthinou
Nikita Zhivotovskiy
186
2
0
01 Nov 2024
Privately Learning Smooth Distributions on the Hypercube by Projections
Clément Lalanne
Sébastien Gadat
130
1
0
16 Sep 2024
Distribution Learnability and Robustness
Shai Ben-David
Alex Bie
Gautam Kamath
Tosca Lechner
139
3
0
25 Jun 2024
Differentially Private Post-Processing for Fair Regression
Ruicheng Xian
Qiaobo Li
Gautam Kamath
Han Zhao
129
4
0
07 May 2024
Lower Bounds for Private Estimation of Gaussian Covariance Matrices under All Reasonable Parameter Regimes
V. S. Portella
Nick Harvey
95
9
0
26 Apr 2024
Insufficient Statistics Perturbation: Stable Estimators for Private Least Squares
Gavin Brown
J. Hayase
Samuel B. Hopkins
Weihao Kong
Xiyang Liu
Sewoong Oh
Juan C. Perdomo
Adam D. Smith
87
2
0
23 Apr 2024
Differentially private projection-depth-based medians
Kelly Ramsay
Dylan Spicker
68
2
0
12 Dec 2023
Sample-Optimal Locally Private Hypothesis Selection and the Provable Benefits of Interactivity
A. F. Pour
Hassan Ashtiani
S. Asoodeh
125
2
0
09 Dec 2023
Instance-Specific Asymmetric Sensitivity in Differential Privacy
David Durfee
116
1
0
02 Nov 2023
Better and Simpler Lower Bounds for Differentially Private Statistical Estimation
Shyam Narayanan
FedML
112
13
0
10 Oct 2023
Mixtures of Gaussians are Privately Learnable with a Polynomial Number of Samples
Mohammad Afzali
H. Ashtiani
Christopher Liaw
146
7
0
07 Sep 2023
Private Distribution Learning with Public Data: The View from Sample Compression
Shai Ben-David
Alex Bie
C. Canonne
Gautam Kamath
Vikrant Singhal
120
15
0
11 Aug 2023
A Polynomial Time, Pure Differentially Private Estimator for Binary Product Distributions
Vikrant Singhal
182
9
0
13 Apr 2023
Polynomial Time and Private Learning of Unbounded Gaussian Mixture Models
Jamil Arbas
H. Ashtiani
Christopher Liaw
123
27
0
07 Mar 2023
From Robustness to Privacy and Back
Hilal Asi
Jonathan R. Ullman
Lydia Zakynthinou
106
35
0
03 Feb 2023
Fast, Sample-Efficient, Affine-Invariant Private Mean and Covariance Estimation for Subgaussian Distributions
Gavin Brown
Samuel B. Hopkins
Adam D. Smith
FedML
120
22
0
28 Jan 2023
Privately Estimating a Gaussian: Efficient, Robust and Optimal
Daniel Alabi
Pravesh Kothari
Pranay Tankala
Prayaag Venkat
Fred Zhang
156
0
0
15 Dec 2022
Robustness Implies Privacy in Statistical Estimation
Samuel B. Hopkins
Gautam Kamath
Mahbod Majid
Shyam Narayanan
174
60
0
09 Dec 2022
Private Estimation with Public Data
Alex Bie
Gautam Kamath
Vikrant Singhal
114
34
0
16 Aug 2022
Differentially Private Covariance Revisited
Wei Dong
Yuting Liang
K. Yi
FedML
130
16
0
28 May 2022
New Lower Bounds for Private Estimation and a Generalized Fingerprinting Lemma
Gautam Kamath
Argyris Mouzakis
Vikrant Singhal
FedML
190
32
0
17 May 2022
Differentially Private Regression with Unbounded Covariates
Jason Milionis
Alkis Kalavasis
Dimitris Fotakis
Stratis Ioannidis
83
12
0
19 Feb 2022
Private Robust Estimation by Stabilizing Convex Relaxations
Pravesh Kothari
Pasin Manurangsi
A. Velingker
86
50
0
07 Dec 2021
Efficient Mean Estimation with Pure Differential Privacy via a Sum-of-Squares Exponential Mechanism
Samuel B. Hopkins
Gautam Kamath
Mahbod Majid
FedML
106
64
0
25 Nov 2021
Private and polynomial time algorithms for learning Gaussians and beyond
H. Ashtiani
Christopher Liaw
166
50
0
22 Nov 2021
A Private and Computationally-Efficient Estimator for Unbounded Gaussians
Gautam Kamath
Argyris Mouzakis
Vikrant Singhal
Thomas Steinke
Jonathan R. Ullman
122
42
0
08 Nov 2021
Universal Private Estimators
Wei Dong
K. Yi
136
21
0
04 Nov 2021
Covariance-Aware Private Mean Estimation Without Private Covariance Estimation
Gavin Brown
Marco Gaboardi
Adam D. Smith
Jonathan R. Ullman
Lydia Zakynthinou
FedML
157
50
0
24 Jun 2021
Privately Learning Mixtures of Axis-Aligned Gaussians
Ishaq Aden-Ali
H. Ashtiani
Christopher Liaw
FedML
100
13
0
03 Jun 2021
Robust and Differentially Private Mean Estimation
Xiyang Liu
Weihao Kong
Sham Kakade
Sewoong Oh
OOD
FedML
109
82
0
18 Feb 2021
Phase transitions for support recovery under local differential privacy
C. Butucea
A. Dubois
Adrien Saumard
FedML
116
3
0
30 Nov 2020
Private Hypothesis Selection
Mark Bun
Gautam Kamath
Thomas Steinke
Zhiwei Steven Wu
224
94
0
30 May 2019
1