ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.10784
  4. Cited By
Learning to Embed Categorical Features without Embedding Tables for
  Recommendation

Learning to Embed Categorical Features without Embedding Tables for Recommendation

21 October 2020
Wang-Cheng Kang
D. Cheng
Tiansheng Yao
Xinyang Yi
Ting-Li Chen
Lichan Hong
Ed H. Chi
    LMTD
    CML
    DML
ArXivPDFHTML

Papers citing "Learning to Embed Categorical Features without Embedding Tables for Recommendation"

6 / 6 papers shown
Title
A Thorough Performance Benchmarking on Lightweight Embedding-based Recommender Systems
A Thorough Performance Benchmarking on Lightweight Embedding-based Recommender Systems
Hung Vinh Tran
Tong Chen
Quoc Viet Hung Nguyen
Zi-Rui Huang
Lizhen Cui
Hongzhi Yin
36
1
0
25 Jun 2024
Mem-Rec: Memory Efficient Recommendation System using Alternative
  Representation
Mem-Rec: Memory Efficient Recommendation System using Alternative Representation
Gopu Krishna Jha
Anthony Thomas
Nilesh Jain
Sameh Gobriel
Tajana Rosing
Ravi Iyer
32
2
0
12 May 2023
Clustering the Sketch: A Novel Approach to Embedding Table Compression
Clustering the Sketch: A Novel Approach to Embedding Table Compression
Henry Ling-Hei Tsang
Thomas Dybdahl Ahle
14
1
0
12 Oct 2022
DreamShard: Generalizable Embedding Table Placement for Recommender
  Systems
DreamShard: Generalizable Embedding Table Placement for Recommender Systems
Daochen Zha
Louis Feng
Qiaoyu Tan
Zirui Liu
Kwei-Herng Lai
Bhargav Bhushanam
Yuandong Tian
A. Kejariwal
Xia Hu
LMTD
OffRL
8
28
0
05 Oct 2022
Towards Fair Federated Recommendation Learning: Characterizing the
  Inter-Dependence of System and Data Heterogeneity
Towards Fair Federated Recommendation Learning: Characterizing the Inter-Dependence of System and Data Heterogeneity
Kiwan Maeng
Haiyu Lu
Luca Melis
John Nguyen
Michael G. Rabbat
Carole-Jean Wu
FedML
20
30
0
30 May 2022
Learnable Embedding Sizes for Recommender Systems
Learnable Embedding Sizes for Recommender Systems
Siyi Liu
Chen Gao
Yihong Chen
Depeng Jin
Yong Li
52
70
0
19 Jan 2021
1