ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.10813
29
5

PBoS: Probabilistic Bag-of-Subwords for Generalizing Word Embedding

21 October 2020
Jinman Zhao
Shawn Zhong
Xiaomin Zhang
Yingyu Liang
    BDL
ArXivPDFHTML
Abstract

We look into the task of \emph{generalizing} word embeddings: given a set of pre-trained word vectors over a finite vocabulary, the goal is to predict embedding vectors for out-of-vocabulary words, \emph{without} extra contextual information. We rely solely on the spellings of words and propose a model, along with an efficient algorithm, that simultaneously models subword segmentation and computes subword-based compositional word embedding. We call the model probabilistic bag-of-subwords (PBoS), as it applies bag-of-subwords for all possible segmentations based on their likelihood. Inspections and affix prediction experiment show that PBoS is able to produce meaningful subword segmentations and subword rankings without any source of explicit morphological knowledge. Word similarity and POS tagging experiments show clear advantages of PBoS over previous subword-level models in the quality of generated word embeddings across languages.

View on arXiv
Comments on this paper