ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.11082
  4. Cited By
On Differentially Private Stochastic Convex Optimization with
  Heavy-tailed Data

On Differentially Private Stochastic Convex Optimization with Heavy-tailed Data

21 October 2020
Di Wang
Hanshen Xiao
S. Devadas
Jinhui Xu
ArXivPDFHTML

Papers citing "On Differentially Private Stochastic Convex Optimization with Heavy-tailed Data"

13 / 13 papers shown
Title
Dyn-D$^2$P: Dynamic Differentially Private Decentralized Learning with Provable Utility Guarantee
Dyn-D2^22P: Dynamic Differentially Private Decentralized Learning with Provable Utility Guarantee
Zehan Zhu
Yan Huang
Xin Wang
Shouling Ji
Jinming Xu
26
0
0
10 May 2025
Differential Private Stochastic Optimization with Heavy-tailed Data:
  Towards Optimal Rates
Differential Private Stochastic Optimization with Heavy-tailed Data: Towards Optimal Rates
Puning Zhao
Jiafei Wu
Zhe Liu
Chong Wang
Rongfei Fan
Qingming Li
48
1
0
19 Aug 2024
Private Means and the Curious Incident of the Free Lunch
Private Means and the Curious Incident of the Free Lunch
Jack Fitzsimons
James Honaker
Michael Shoemate
Vikrant Singhal
46
2
0
19 Aug 2024
Delving into Differentially Private Transformer
Delving into Differentially Private Transformer
Youlong Ding
Xueyang Wu
Yining Meng
Yonggang Luo
Hao Wang
Weike Pan
36
5
0
28 May 2024
PrivSGP-VR: Differentially Private Variance-Reduced Stochastic Gradient
  Push with Tight Utility Bounds
PrivSGP-VR: Differentially Private Variance-Reduced Stochastic Gradient Push with Tight Utility Bounds
Zehan Zhu
Yan Huang
Xin Wang
Jinming Xu
41
0
0
04 May 2024
Convergence and Privacy of Decentralized Nonconvex Optimization with
  Gradient Clipping and Communication Compression
Convergence and Privacy of Decentralized Nonconvex Optimization with Gradient Clipping and Communication Compression
Boyue Li
Yuejie Chi
21
12
0
17 May 2023
Differentially Private Stochastic Convex Optimization in (Non)-Euclidean
  Space Revisited
Differentially Private Stochastic Convex Optimization in (Non)-Euclidean Space Revisited
Jinyan Su
Changhong Zhao
Di Wang
30
3
0
31 Mar 2023
Differentially Private Natural Language Models: Recent Advances and
  Future Directions
Differentially Private Natural Language Models: Recent Advances and Future Directions
Lijie Hu
Ivan Habernal
Lei Shen
Di Wang
AAML
30
18
0
22 Jan 2023
Private optimization in the interpolation regime: faster rates and
  hardness results
Private optimization in the interpolation regime: faster rates and hardness results
Hilal Asi
Karan N. Chadha
Gary Cheng
John C. Duchi
47
5
0
31 Oct 2022
Beyond Uniform Lipschitz Condition in Differentially Private
  Optimization
Beyond Uniform Lipschitz Condition in Differentially Private Optimization
Rudrajit Das
Satyen Kale
Zheng Xu
Tong Zhang
Sujay Sanghavi
24
17
0
21 Jun 2022
New Lower Bounds for Private Estimation and a Generalized Fingerprinting
  Lemma
New Lower Bounds for Private Estimation and a Generalized Fingerprinting Lemma
Gautam Kamath
Argyris Mouzakis
Vikrant Singhal
FedML
42
26
0
17 May 2022
Differentially Private SGDA for Minimax Problems
Differentially Private SGDA for Minimax Problems
Zhenhuan Yang
Shu Hu
Yunwen Lei
Kush R. Varshney
Siwei Lyu
Yiming Ying
36
19
0
22 Jan 2022
Private Robust Estimation by Stabilizing Convex Relaxations
Private Robust Estimation by Stabilizing Convex Relaxations
Pravesh Kothari
Pasin Manurangsi
A. Velingker
24
45
0
07 Dec 2021
1