Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2010.11645
Cited By
Enabling certification of verification-agnostic networks via memory-efficient semidefinite programming
22 October 2020
Sumanth Dathathri
Krishnamurthy Dvijotham
Alexey Kurakin
Aditi Raghunathan
J. Uesato
Rudy Bunel
Shreya Shankar
Jacob Steinhardt
Ian Goodfellow
Percy Liang
Pushmeet Kohli
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Enabling certification of verification-agnostic networks via memory-efficient semidefinite programming"
33 / 33 papers shown
Title
Verification of Neural Networks against Convolutional Perturbations via Parameterised Kernels
Benedikt Brückner
Alessio Lomuscio
AAML
59
0
0
07 Nov 2024
Towards Universal Certified Robustness with Multi-Norm Training
Enyi Jiang
Gagandeep Singh
Gagandeep Singh
AAML
65
1
0
03 Oct 2024
Verifying Properties of Binary Neural Networks Using Sparse Polynomial Optimization
Jianting Yang
Srecko Ðurasinovic
Jean B. Lasserre
Victor Magron
Jun Zhao
AAML
46
1
0
27 May 2024
Cross-Input Certified Training for Universal Perturbations
Changming Xu
Gagandeep Singh
AAML
33
2
0
15 May 2024
Fast, Scalable, Warm-Start Semidefinite Programming with Spectral Bundling and Sketching
Rico Angell
Andrew McCallum
32
1
0
19 Dec 2023
Certified Robustness via Dynamic Margin Maximization and Improved Lipschitz Regularization
Mahyar Fazlyab
Taha Entesari
Aniket Roy
Ramalingam Chellappa
AAML
21
11
0
29 Sep 2023
When Deep Learning Meets Polyhedral Theory: A Survey
Joey Huchette
Gonzalo Muñoz
Thiago Serra
Calvin Tsay
AI4CE
102
33
0
29 Apr 2023
Optimization and Optimizers for Adversarial Robustness
Hengyue Liang
Buyun Liang
Le Peng
Ying Cui
Tim Mitchell
Ju Sun
AAML
30
5
0
23 Mar 2023
Semidefinite Relaxations for Robust Multiview Triangulation
Linus Harenstam-Nielsen
Niclas Zeller
Daniel Cremers
3DV
23
4
0
26 Jan 2023
Probabilistic Verification of ReLU Neural Networks via Characteristic Functions
Joshua Pilipovsky
Vignesh Sivaramakrishnan
Meeko Oishi
Panagiotis Tsiotras
39
5
0
03 Dec 2022
Tight Certification of Adversarially Trained Neural Networks via Nonconvex Low-Rank Semidefinite Relaxations
Hong-Ming Chiu
Richard Y. Zhang
AAML
22
2
0
30 Nov 2022
Improved techniques for deterministic l2 robustness
Sahil Singla
S. Feizi
AAML
28
10
0
15 Nov 2022
Data Models for Dataset Drift Controls in Machine Learning With Optical Images
Luis Oala
Marco Aversa
Gabriel Nobis
Kurt Willis
Yoan Neuenschwander
...
E. Pomarico
Wojciech Samek
Roderick Murray-Smith
Christoph Clausen
B. Sanguinetti
36
5
0
04 Nov 2022
Certified Training: Small Boxes are All You Need
Mark Niklas Muller
Franziska Eckert
Marc Fischer
Martin Vechev
AAML
39
46
0
10 Oct 2022
General Cutting Planes for Bound-Propagation-Based Neural Network Verification
Huan Zhang
Shiqi Wang
Kaidi Xu
Linyi Li
Bo Li
Suman Jana
Cho-Jui Hsieh
J. Zico Kolter
48
97
0
11 Aug 2022
Adversarial Robustness of Deep Neural Networks: A Survey from a Formal Verification Perspective
Mark Huasong Meng
Guangdong Bai
Sin Gee Teo
Zhe Hou
Yan Xiao
Yun Lin
Jin Song Dong
AAML
37
43
0
24 Jun 2022
(De-)Randomized Smoothing for Decision Stump Ensembles
Miklós Z. Horváth
Mark Niklas Muller
Marc Fischer
Martin Vechev
30
3
0
27 May 2022
Complete Verification via Multi-Neuron Relaxation Guided Branch-and-Bound
Claudio Ferrari
Mark Niklas Muller
Nikola Jovanović
Martin Vechev
39
83
0
30 Apr 2022
A Unified View of SDP-based Neural Network Verification through Completely Positive Programming
Robin Brown
Edward Schmerling
Navid Azizan
Marco Pavone
AAML
24
15
0
06 Mar 2022
Adversarial robustness of sparse local Lipschitz predictors
Ramchandran Muthukumar
Jeremias Sulam
AAML
34
13
0
26 Feb 2022
OMLT: Optimization & Machine Learning Toolkit
Francesco Ceccon
Jordan Jalving
Joshua Haddad
Alexander Thebelt
Calvin Tsay
C. Laird
Ruth Misener
34
70
0
04 Feb 2022
Neural Network Verification in Control
M. Everett
AAML
37
16
0
30 Sep 2021
DeepSplit: Scalable Verification of Deep Neural Networks via Operator Splitting
Shaoru Chen
Eric Wong
Zico Kolter
Mahyar Fazlyab
47
15
0
16 Jun 2021
Provably Robust Detection of Out-of-distribution Data (almost) for free
Alexander Meinke
Julian Bitterwolf
Matthias Hein
OODD
33
22
0
08 Jun 2021
PRIMA: General and Precise Neural Network Certification via Scalable Convex Hull Approximations
Mark Niklas Muller
Gleb Makarchuk
Gagandeep Singh
Markus Püschel
Martin Vechev
41
90
0
05 Mar 2021
Make Sure You're Unsure: A Framework for Verifying Probabilistic Specifications
Leonard Berrada
Sumanth Dathathri
Krishnamurthy Dvijotham
Robert Stanforth
Rudy Bunel
J. Uesato
Sven Gowal
M. P. Kumar
AAML
OOD
32
17
0
18 Feb 2021
Reduced-Order Neural Network Synthesis with Robustness Guarantees
R. Drummond
M. Turner
S. Duncan
27
9
0
18 Feb 2021
On the Paradox of Certified Training
Nikola Jovanović
Mislav Balunović
Maximilian Baader
Martin Vechev
OOD
28
13
0
12 Feb 2021
Optimism in the Face of Adversity: Understanding and Improving Deep Learning through Adversarial Robustness
Guillermo Ortiz-Jiménez
Apostolos Modas
Seyed-Mohsen Moosavi-Dezfooli
P. Frossard
AAML
39
48
0
19 Oct 2020
SoK: Certified Robustness for Deep Neural Networks
Linyi Li
Tao Xie
Bo Li
AAML
38
128
0
09 Sep 2020
Scaling Polyhedral Neural Network Verification on GPUs
Christoph Müller
F. Serre
Gagandeep Singh
Markus Püschel
Martin Vechev
AAML
29
56
0
20 Jul 2020
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
251
1,842
0
03 Feb 2017
Safe Exploration in Markov Decision Processes
T. Moldovan
Pieter Abbeel
78
308
0
22 May 2012
1