ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.12190
  4. Cited By
Towards Robust Neural Networks via Orthogonal Diversity

Towards Robust Neural Networks via Orthogonal Diversity

23 October 2020
Kun Fang
Qinghua Tao
Yingwen Wu
Tao Li
Jia Cai
Feipeng Cai
Xiaolin Huang
Jie-jin Yang
    AAML
ArXivPDFHTML

Papers citing "Towards Robust Neural Networks via Orthogonal Diversity"

5 / 5 papers shown
Title
InfoAT: Improving Adversarial Training Using the Information Bottleneck
  Principle
InfoAT: Improving Adversarial Training Using the Information Bottleneck Principle
Mengting Xu
Tao Zhang
Zhongnian Li
Daoqiang Zhang
AAML
27
15
0
23 Jun 2022
A Survey of Robust Adversarial Training in Pattern Recognition:
  Fundamental, Theory, and Methodologies
A Survey of Robust Adversarial Training in Pattern Recognition: Fundamental, Theory, and Methodologies
Zhuang Qian
Kaizhu Huang
Qiufeng Wang
Xu-Yao Zhang
OOD
AAML
ObjD
44
71
0
26 Mar 2022
Learn2Perturb: an End-to-end Feature Perturbation Learning to Improve
  Adversarial Robustness
Learn2Perturb: an End-to-end Feature Perturbation Learning to Improve Adversarial Robustness
Ahmadreza Jeddi
M. Shafiee
Michelle Karg
C. Scharfenberger
A. Wong
OOD
AAML
48
63
0
02 Mar 2020
ComDefend: An Efficient Image Compression Model to Defend Adversarial
  Examples
ComDefend: An Efficient Image Compression Model to Defend Adversarial Examples
Xiaojun Jia
Xingxing Wei
Xiaochun Cao
H. Foroosh
AAML
50
259
0
30 Nov 2018
Adversarial Machine Learning at Scale
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
256
3,102
0
04 Nov 2016
1