Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2010.13365
Cited By
Robustness May Be at Odds with Fairness: An Empirical Study on Class-wise Accuracy
26 October 2020
Philipp Benz
Chaoning Zhang
Adil Karjauv
In So Kweon
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Robustness May Be at Odds with Fairness: An Empirical Study on Class-wise Accuracy"
9 / 9 papers shown
Title
On the uncertainty principle of neural networks
Jun-Jie Zhang
Dong-xiao Zhang
Jian-Nan Chen
L. Pang
Deyu Meng
57
2
0
17 Jan 2025
FAIR-TAT: Improving Model Fairness Using Targeted Adversarial Training
Tejaswini Medi
Steffen Jung
M. Keuper
AAML
38
3
0
30 Oct 2024
A Comprehensive Study on Dataset Distillation: Performance, Privacy, Robustness and Fairness
Zongxiong Chen
Jiahui Geng
Derui Zhu
Herbert Woisetschlaeger
Qing Li
Sonja Schimmler
Ruben Mayer
Chunming Rong
DD
24
9
0
05 May 2023
Implementing Responsible AI: Tensions and Trade-Offs Between Ethics Aspects
Conrad Sanderson
David M. Douglas
Qinghua Lu
37
11
0
17 Apr 2023
UnbiasedNets: A Dataset Diversification Framework for Robustness Bias Alleviation in Neural Networks
Mahum Naseer
B. Prabakaran
Osman Hasan
Muhammad Shafique
16
7
0
24 Feb 2023
Function Composition in Trustworthy Machine Learning: Implementation Choices, Insights, and Questions
Manish Nagireddy
Moninder Singh
Samuel C. Hoffman
Evaline Ju
K. Ramamurthy
Kush R. Varshney
27
1
0
17 Feb 2023
Analysis and Applications of Class-wise Robustness in Adversarial Training
Qi Tian
Kun Kuang
Ke Jiang
Fei Wu
Yisen Wang
AAML
16
46
0
29 May 2021
Security Concerns on Machine Learning Solutions for 6G Networks in mmWave Beam Prediction
Ferhat Ozgur Catak
Evren Çatak
Murat Kuzlu
Umit Cali
Devrim Unal
AAML
35
44
0
09 May 2021
Universal Adversarial Training with Class-Wise Perturbations
Philipp Benz
Chaoning Zhang
Adil Karjauv
In So Kweon
AAML
15
26
0
07 Apr 2021
1