ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
  • Feedback
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.14563
  4. Cited By
Adversarial Dueling Bandits

Adversarial Dueling Bandits

27 October 2020
Aadirupa Saha
Tomer Koren
Yishay Mansour
ArXiv (abs)PDFHTML

Papers citing "Adversarial Dueling Bandits"

16 / 16 papers shown
Title
Biased Dueling Bandits with Stochastic Delayed Feedback
Biased Dueling Bandits with Stochastic Delayed Feedback
Bongsoo Yi
Yue Kang
Yao Li
151
1
0
26 Aug 2024
Multi-Player Approaches for Dueling Bandits
Multi-Player Approaches for Dueling Bandits
Or Raveh
Junya Honda
Masashi Sugiyama
201
1
0
25 May 2024
Nearly Optimal Algorithms for Contextual Dueling Bandits from Adversarial Feedback
Nearly Optimal Algorithms for Contextual Dueling Bandits from Adversarial Feedback
Qiwei Di
Jiafan He
Quanquan Gu
157
1
0
16 Apr 2024
Feel-Good Thompson Sampling for Contextual Dueling Bandits
Feel-Good Thompson Sampling for Contextual Dueling Bandits
Xuheng Li
Heyang Zhao
Quanquan Gu
135
15
0
09 Apr 2024
Think Before You Duel: Understanding Complexities of Preference Learning
  under Constrained Resources
Think Before You Duel: Understanding Complexities of Preference Learning under Constrained Resources
Rohan Deb
Aadirupa Saha
104
0
0
28 Dec 2023
Variance-Aware Regret Bounds for Stochastic Contextual Dueling Bandits
Variance-Aware Regret Bounds for Stochastic Contextual Dueling Bandits
Qiwei Di
Tao Jin
Yue Wu
Heyang Zhao
Farzad Farnoud
Quanquan Gu
118
15
0
02 Oct 2023
When Can We Track Significant Preference Shifts in Dueling Bandits?
When Can We Track Significant Preference Shifts in Dueling Bandits?
Joe Suk
Arpit Agarwal
150
5
0
13 Feb 2023
One Arrow, Two Kills: An Unified Framework for Achieving Optimal Regret
  Guarantees in Sleeping Bandits
One Arrow, Two Kills: An Unified Framework for Achieving Optimal Regret Guarantees in Sleeping Bandits
Pierre Gaillard
Aadirupa Saha
Soham Dan
95
3
0
26 Oct 2022
ANACONDA: An Improved Dynamic Regret Algorithm for Adaptive
  Non-Stationary Dueling Bandits
ANACONDA: An Improved Dynamic Regret Algorithm for Adaptive Non-Stationary Dueling Bandits
Thomas Kleine Buening
Aadirupa Saha
98
8
0
25 Oct 2022
Dueling Convex Optimization with General Preferences
Dueling Convex Optimization with General Preferences
Aadirupa Saha
Tomer Koren
Yishay Mansour
82
3
0
27 Sep 2022
Active Learning with Label Comparisons
Active Learning with Label Comparisons
G. Yona
Shay Moran
G. Elidan
Amir Globerson
108
6
0
10 Apr 2022
Versatile Dueling Bandits: Best-of-both-World Analyses for Online
  Learning from Preferences
Versatile Dueling Bandits: Best-of-both-World Analyses for Online Learning from Preferences
Aadirupa Saha
Pierre Gaillard
109
7
0
14 Feb 2022
Non-Stationary Dueling Bandits
Non-Stationary Dueling Bandits
Patrick Kolpaczki
Viktor Bengs
Eyke Hüllermeier
103
7
0
02 Feb 2022
Learning to Identify Top Elo Ratings: A Dueling Bandits Approach
Learning to Identify Top Elo Ratings: A Dueling Bandits Approach
Xueqiang Yan
Yali Du
Binxin Ru
Jun Wang
Haifeng Zhang
Xu Chen
113
7
0
12 Jan 2022
Efficient and Optimal Algorithms for Contextual Dueling Bandits under
  Realizability
Efficient and Optimal Algorithms for Contextual Dueling Bandits under Realizability
Aadirupa Saha
A. Krishnamurthy
143
40
0
24 Nov 2021
Optimal and Efficient Dynamic Regret Algorithms for Non-Stationary
  Dueling Bandits
Optimal and Efficient Dynamic Regret Algorithms for Non-Stationary Dueling Bandits
Aadirupa Saha
Shubham Gupta
106
11
0
06 Nov 2021
1