Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2010.15201
Cited By
Forecasting Hamiltonian dynamics without canonical coordinates
28 October 2020
A. Choudhary
J. Lindner
Elliott G. Holliday
Scott T. Miller
S. Sinha
W. Ditto
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Forecasting Hamiltonian dynamics without canonical coordinates"
11 / 11 papers shown
Title
Unsupervised Learning of Hybrid Latent Dynamics: A Learn-to-Identify Framework
Yubo Ye
Sumeet Vadhavkar
Xiajun Jiang
R. Missel
Huafeng Liu
Linwei Wang
57
0
0
13 Mar 2024
Data-Driven Identification of Quadratic Representations for Nonlinear Hamiltonian Systems using Weakly Symplectic Liftings
Süleyman Yıldız
P. Goyal
Thomas Bendokat
P. Benner
81
10
0
02 Aug 2023
Learning unidirectional coupling using echo-state network
S. Mandal
M. Shrimali
76
7
0
23 Mar 2023
Generating extreme quantum scattering in graphene with machine learning
Chen-Di Han
Y. Lai
47
4
0
13 Dec 2022
Learning Trajectories of Hamiltonian Systems with Neural Networks
Katsiaryna Haitsiukevich
Alexander Ilin
51
4
0
11 Apr 2022
Neuronal diversity can improve machine learning for physics and beyond
A. Choudhary
Anil Radhakrishnan
J. Lindner
S. Sinha
W. Ditto
AI4CE
26
4
0
09 Apr 2022
SyMetric: Measuring the Quality of Learnt Hamiltonian Dynamics Inferred from Vision
I. Higgins
Peter Wirnsberger
Andrew Jaegle
Aleksandar Botev
89
8
0
10 Nov 2021
Which priors matter? Benchmarking models for learning latent dynamics
Aleksandar Botev
Andrew Jaegle
Peter Wirnsberger
Daniel Hennes
I. Higgins
AI4CE
119
28
0
09 Nov 2021
Machine-Learning Non-Conservative Dynamics for New-Physics Detection
Ziming Liu
Bohan Wang
Qi Meng
Wei Chen
M. Tegmark
Tie-Yan Liu
PINN
AI4CE
111
15
0
31 May 2021
Learning Hamiltonian dynamics by reservoir computer
Han Zhang
Huawei Fan
Liang Wang
Xingang Wang
20
3
0
24 Apr 2021
Adaptable Hamiltonian neural networks
Chen-Di Han
Bryan Glaz
Mulugeta Haile
Y. Lai
AI4TS
85
26
0
25 Feb 2021
1