ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.01591
  4. Cited By
Support estimation in high-dimensional heteroscedastic mean regression
v1v2 (latest)

Support estimation in high-dimensional heteroscedastic mean regression

3 November 2020
P. Hermann
H. Holzmann
ArXiv (abs)PDFHTML

Papers citing "Support estimation in high-dimensional heteroscedastic mean regression"

10 / 10 papers shown
Title
Optimal variable selection and adaptive noisy Compressed Sensing
Optimal variable selection and adaptive noisy Compressed Sensing
M. Ndaoud
Alexandre B. Tsybakov
426
28
0
10 Sep 2018
Adaptive Huber Regression
Adaptive Huber Regression
Qiang Sun
Wen-Xin Zhou
Jianqing Fan
292
308
0
21 Jun 2017
Semismooth Newton Coordinate Descent Algorithm for Elastic-Net Penalized
  Huber Loss Regression and Quantile Regression
Semismooth Newton Coordinate Descent Algorithm for Elastic-Net Penalized Huber Loss Regression and Quantile Regression
Congrui Yi
Jian Huang
132
157
0
09 Sep 2015
I-LAMM for Sparse Learning: Simultaneous Control of Algorithmic
  Complexity and Statistical Error
I-LAMM for Sparse Learning: Simultaneous Control of Algorithmic Complexity and Statistical Error
Jianqing Fan
Han Liu
Qiang Sun
Tong Zhang
252
128
0
03 Jul 2015
Support recovery without incoherence: A case for nonconvex
  regularization
Support recovery without incoherence: A case for nonconvex regularization
Po-Ling Loh
Martin J. Wainwright
269
176
0
17 Dec 2014
The Lasso Problem and Uniqueness
The Lasso Problem and Uniqueness
Robert Tibshirani
492
576
0
01 Jun 2012
Adaptive robust variable selection
Adaptive robust variable selectionAnnals of Statistics (Ann. Stat.), 2012
Jianqing Fan
Yingying Fan
Emre Barut
1.1K
208
0
22 May 2012
Challenging the empirical mean and empirical variance: a deviation study
Challenging the empirical mean and empirical variance: a deviation study
O. Catoni
513
494
0
10 Sep 2010
L1-Penalized Quantile Regression in High-Dimensional Sparse Models
L1-Penalized Quantile Regression in High-Dimensional Sparse Models
A. Belloni
Victor Chernozhukov
633
467
0
19 Apr 2009
Adaptive Lasso for High Dimensional Regression and Gaussian Graphical
  Modeling
Adaptive Lasso for High Dimensional Regression and Gaussian Graphical Modeling
Shuheng Zhou
Sara van de Geer
Peter Buhlmann
301
81
0
13 Mar 2009
1