ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.03396
  4. Cited By
Bayes Security: A Not So Average Metric

Bayes Security: A Not So Average Metric

6 November 2020
K. Chatzikokolakis
Giovanni Cherubin
C. Palamidessi
Carmela Troncoso
ArXivPDFHTML

Papers citing "Bayes Security: A Not So Average Metric"

11 / 11 papers shown
Title
Evaluating Membership Inference Attacks in heterogeneous-data setups
Evaluating Membership Inference Attacks in heterogeneous-data setups
Bram van Dartel
Marc Damie
Florian Hahn
MIACV
MIALM
145
0
0
26 Feb 2025
Self-Defense: Optimal QIF Solutions and Application to Website
  Fingerprinting
Self-Defense: Optimal QIF Solutions and Application to Website Fingerprinting
Andreas Athanasiou
K. Chatzikokolakis
C. Palamidessi
AAML
22
0
0
15 Nov 2024
Beyond the Calibration Point: Mechanism Comparison in Differential Privacy
Beyond the Calibration Point: Mechanism Comparison in Differential Privacy
Georgios Kaissis
Stefan Kolek
Borja Balle
Jamie Hayes
Daniel Rueckert
40
4
0
13 Jun 2024
Closed-Form Bounds for DP-SGD against Record-level Inference
Closed-Form Bounds for DP-SGD against Record-level Inference
Giovanni Cherubin
Boris Köpf
Andrew J. Paverd
Shruti Tople
Lukas Wutschitz
Santiago Zanella Béguelin
25
2
0
22 Feb 2024
The Fundamental Limits of Least-Privilege Learning
The Fundamental Limits of Least-Privilege Learning
Theresa Stadler
B. Kulynych
Michael Gastpar
Nicoals Papernot
Carmela Troncoso
20
1
0
19 Feb 2024
Revealing the True Cost of Locally Differentially Private Protocols: An
  Auditing Perspective
Revealing the True Cost of Locally Differentially Private Protocols: An Auditing Perspective
Héber H. Arcolezi
Sébastien Gambs
25
1
0
04 Sep 2023
Pool Inference Attacks on Local Differential Privacy: Quantifying the
  Privacy Guarantees of Apple's Count Mean Sketch in Practice
Pool Inference Attacks on Local Differential Privacy: Quantifying the Privacy Guarantees of Apple's Count Mean Sketch in Practice
Andrea Gadotti
Frederick Sell
Reethika Ramesh
Jinyuan Jia
19
18
0
14 Apr 2023
On the Risks of Collecting Multidimensional Data Under Local
  Differential Privacy
On the Risks of Collecting Multidimensional Data Under Local Differential Privacy
Héber H. Arcolezi
Sébastien Gambs
Jean-François Couchot
C. Palamidessi
18
12
0
04 Sep 2022
Increasing Adversarial Uncertainty to Scale Private Similarity Testing
Increasing Adversarial Uncertainty to Scale Private Similarity Testing
Yiqing Hua
Armin Namavari
Kai-Wen Cheng
Mor Naaman
Thomas Ristenpart
14
4
0
03 Sep 2021
Extracting Training Data from Large Language Models
Extracting Training Data from Large Language Models
Nicholas Carlini
Florian Tramèr
Eric Wallace
Matthew Jagielski
Ariel Herbert-Voss
...
Tom B. Brown
D. Song
Ulfar Erlingsson
Alina Oprea
Colin Raffel
MLAU
SILM
267
1,808
0
14 Dec 2020
Disparate Vulnerability to Membership Inference Attacks
Disparate Vulnerability to Membership Inference Attacks
B. Kulynych
Mohammad Yaghini
Giovanni Cherubin
Michael Veale
Carmela Troncoso
11
39
0
02 Jun 2019
1