ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.04486
  4. Cited By
High-dimensional modeling of spatial and spatio-temporal conditional
  extremes using INLA and Gaussian Markov random fields
v1v2v3 (latest)

High-dimensional modeling of spatial and spatio-temporal conditional extremes using INLA and Gaussian Markov random fields

9 November 2020
Emma S. Simpson
Thomas Opitz
J. Wadsworth
ArXiv (abs)PDFHTML

Papers citing "High-dimensional modeling of spatial and spatio-temporal conditional extremes using INLA and Gaussian Markov random fields"

4 / 4 papers shown
Title
inlabru: software for fitting latent Gaussian models with non-linear
  predictors
inlabru: software for fitting latent Gaussian models with non-linear predictors
Finn Lindgren
F. Bachl
Janine Illian
Man Ho Suen
H. Rue
Andrew E. Seaton
65
5
0
30 Jun 2024
An Efficient Workflow for Modelling High-Dimensional Spatial Extremes
An Efficient Workflow for Modelling High-Dimensional Spatial Extremes
Silius M. Vandeskog
S. Martino
R. Huser
28
4
0
03 Oct 2022
Likelihood-Free Parameter Estimation with Neural Bayes Estimators
Likelihood-Free Parameter Estimation with Neural Bayes Estimators
Matthew Sainsbury-Dale
A. Zammit‐Mangion
Raphael Huser
292
35
0
27 Aug 2022
A modeler's guide to extreme value software
A modeler's guide to extreme value software
Léo R. Belzile
Christophe Dutang
P. Northrop
Thomas Opitz
52
15
0
16 May 2022
1