Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2011.04573
Cited By
Parameterized Explainer for Graph Neural Network
9 November 2020
Dongsheng Luo
Wei Cheng
Dongkuan Xu
Wenchao Yu
Bo Zong
Haifeng Chen
Xiang Zhang
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Parameterized Explainer for Graph Neural Network"
50 / 288 papers shown
Title
Dynamic Causal Explanation Based Diffusion-Variational Graph Neural Network for Spatio-temporal Forecasting
G. Liang
Prayag Tiwari
Sławomir Nowaczyk
Stefan Byttner
F. Alonso-Fernandez
DiffM
33
11
0
16 May 2023
Survey of Malware Analysis through Control Flow Graph using Machine Learning
Shaswata Mitra
Stephen Torri
Sudip Mittal
30
5
0
15 May 2023
Towards Understanding the Generalization of Graph Neural Networks
Huayi Tang
Y. Liu
GNN
AI4CE
32
29
0
14 May 2023
Unstructured and structured data: Can we have the best of both worlds with large language models?
W. Tan
11
1
0
25 Apr 2023
Generating Post-hoc Explanations for Skip-gram-based Node Embeddings by Identifying Important Nodes with Bridgeness
Hogun Park
Jennifer Neville
11
4
0
24 Apr 2023
Explanations of Black-Box Models based on Directional Feature Interactions
A. Masoomi
Davin Hill
Zhonghui Xu
C. Hersh
E. Silverman
P. Castaldi
Stratis Ioannidis
Jennifer Dy
FAtt
21
17
0
16 Apr 2023
Combining Stochastic Explainers and Subgraph Neural Networks can Increase Expressivity and Interpretability
Indro Spinelli
Michele Guerra
F. Bianchi
Simone Scardapane
25
0
0
14 Apr 2023
Inductive Graph Unlearning
Cheng-Long Wang
Mengdi Huai
Di Wang
MU
11
22
0
06 Apr 2023
Rethinking the Trigger-injecting Position in Graph Backdoor Attack
Jing Xu
Gorka Abad
S. Picek
LLMSV
SILM
19
6
0
05 Apr 2023
The expressive power of pooling in Graph Neural Networks
F. Bianchi
Veronica Lachi
14
29
0
04 Apr 2023
Counterfactual Learning on Graphs: A Survey
Zhimeng Guo
Teng Xiao
Zongyu Wu
Charu C. Aggarwal
Hui Liu
Suhang Wang
CML
AI4CE
38
18
0
03 Apr 2023
A Survey on Malware Detection with Graph Representation Learning
Tristan Bilot
Nour El Madhoun
Khaldoun Al Agha
Anis Zouaoui
AAML
13
20
0
28 Mar 2023
Illuminati: Towards Explaining Graph Neural Networks for Cybersecurity Analysis
Haoyu He
Yuede Ji
H. H. Huang
20
20
0
26 Mar 2023
Time Series Contrastive Learning with Information-Aware Augmentations
Dongsheng Luo
Wei Cheng
Yingheng Wang
Dongkuan Xu
Jingchao Ni
...
Xuchao Zhang
Yanchi Liu
Yuncong Chen
Haifeng Chen
Xiang Zhang
AI4TS
24
55
0
21 Mar 2023
Distill n' Explain: explaining graph neural networks using simple surrogates
Tamara A. Pereira
Erik Nasciment
Lucas Resck
Diego Mesquita
Amauri Souza
22
15
0
17 Mar 2023
DAG Matters! GFlowNets Enhanced Explainer For Graph Neural Networks
Wenqian Li
Yinchuan Li
Zhigang Li
Jianye Hao
Yan Pang
83
29
0
04 Mar 2023
PaGE-Link: Path-based Graph Neural Network Explanation for Heterogeneous Link Prediction
Shichang Zhang
Jiani Zhang
Xiang Song
Soji Adeshina
Da Zheng
Christos Faloutsos
Yizhou Sun
LRM
19
31
0
24 Feb 2023
Self-Supervised Temporal Graph learning with Temporal and Structural Intensity Alignment
Meng Liu
K. Liang
Bin Xiao
Wenxuan Tu
Sihang Zhou
Xihong Yang
Xinwang Liu
Yue Liu
18
68
0
15 Feb 2023
Adversarial Learning Data Augmentation for Graph Contrastive Learning in Recommendation
Junjie Huang
Qi Cao
Ruobing Xie
Shaoliang Zhang
Feng Xia
Huawei Shen
Xueqi Cheng
16
9
0
05 Feb 2023
Structural Explanations for Graph Neural Networks using HSIC
Ayato Toyokuni
Makoto Yamada
19
1
0
04 Feb 2023
Graph Neural Networks for temporal graphs: State of the art, open challenges, and opportunities
Antonio Longa
Veronica Lachi
G. Santin
Monica Bianchini
Bruno Lepri
Pietro Lió
F. Scarselli
Andrea Passerini
AI4CE
13
50
0
02 Feb 2023
State of the Art and Potentialities of Graph-level Learning
Zhenyu Yang
Ge Zhang
Jia Wu
Jian Yang
Quan.Z Sheng
...
Charu C. Aggarwal
Hao Peng
Wenbin Hu
Edwin R. Hancock
Pietro Lio'
GNN
AI4CE
30
10
0
14 Jan 2023
Faithful and Consistent Graph Neural Network Explanations with Rationale Alignment
Tianxiang Zhao
Dongsheng Luo
Xiang Zhang
Suhang Wang
21
7
0
07 Jan 2023
Rethinking Explaining Graph Neural Networks via Non-parametric Subgraph Matching
Fang Wu
Siyuan Li
Xurui Jin
Yinghui Jiang
Dragomir R. Radev
Z. Niu
Stan Z. Li
22
10
0
07 Jan 2023
CI-GNN: A Granger Causality-Inspired Graph Neural Network for Interpretable Brain Network-Based Psychiatric Diagnosis
Kaizhong Zheng
Shujian Yu
Badong Chen
CML
21
31
0
04 Jan 2023
GANExplainer: GAN-based Graph Neural Networks Explainer
Yiqiao Li
Jianlong Zhou
Boyuan Zheng
Fang Chen
LLMAG
29
4
0
30 Dec 2022
Graph Learning and Its Advancements on Large Language Models: A Holistic Survey
Shaopeng Wei
Yu Zhao
Xingyan Chen
Qing Li
Fuzhen Zhuang
Ji Liu
Fuji Ren
Gang Kou
AI4CE
19
5
0
17 Dec 2022
TopoImb: Toward Topology-level Imbalance in Learning from Graphs
Tianxiang Zhao
Dongsheng Luo
Xiang Zhang
Suhang Wang
AI4CE
28
11
0
16 Dec 2022
Towards Explainable Motion Prediction using Heterogeneous Graph Representations
Sandra Carrasco Limeros
Sylwia Majchrowska
Joakim Johnander
Christoffer Petersson
David Fernández Llorca
29
15
0
07 Dec 2022
On the Limit of Explaining Black-box Temporal Graph Neural Networks
Minh Nhat Vu
My T. Thai
11
4
0
02 Dec 2022
xEM: Explainable Entity Matching in Customer 360
Sukriti Jaitly
Deepa Mariam George
Balaji Ganesan
Muhammad Ameen
Srinivas Pusapati
16
0
0
01 Dec 2022
Towards Training GNNs using Explanation Directed Message Passing
V. Giunchiglia
Chirag Varun Shukla
Guadalupe Gonzalez
Chirag Agarwal
25
7
0
30 Nov 2022
Interpreting Unfairness in Graph Neural Networks via Training Node Attribution
Yushun Dong
Song Wang
Jing Ma
Ninghao Liu
Jundong Li
40
21
0
25 Nov 2022
MEGAN: Multi-Explanation Graph Attention Network
Jonas Teufel
Luca Torresi
Patrick Reiser
Pascal Friederich
16
8
0
23 Nov 2022
Cross-Mode Knowledge Adaptation for Bike Sharing Demand Prediction using Domain-Adversarial Graph Neural Networks
Yuebing Liang
Guan Huang
Zhan Zhao
OOD
21
14
0
16 Nov 2022
INGREX: An Interactive Explanation Framework for Graph Neural Networks
Tien-Cuong Bui
Van-Duc Le
Wen-Syan Li
S. Cha
17
0
0
03 Nov 2022
PAGE: Prototype-Based Model-Level Explanations for Graph Neural Networks
Yong-Min Shin
Sun-Woo Kim
Won-Yong Shin
21
4
0
31 Oct 2022
Interpretable Geometric Deep Learning via Learnable Randomness Injection
Siqi Miao
Yunan Luo
Miaoyuan Liu
Pan Li
19
25
0
30 Oct 2022
Explaining the Explainers in Graph Neural Networks: a Comparative Study
Antonio Longa
Steve Azzolin
G. Santin
G. Cencetti
Pietro Lio'
Bruno Lepri
Andrea Passerini
46
27
0
27 Oct 2022
A Survey on Graph Counterfactual Explanations: Definitions, Methods, Evaluation, and Research Challenges
Mario Alfonso Prado-Romero
Bardh Prenkaj
Giovanni Stilo
F. Giannotti
CML
27
30
0
21 Oct 2022
Global Counterfactual Explainer for Graph Neural Networks
Mert Kosan
Zexi Huang
Sourav Medya
Sayan Ranu
Ambuj K. Singh
19
47
0
21 Oct 2022
Toward Multiple Specialty Learners for Explaining GNNs via Online Knowledge Distillation
Tien-Cuong Bui
Van-Duc Le
Wen-Syan Li
S. Cha
15
3
0
20 Oct 2022
Global Explainability of GNNs via Logic Combination of Learned Concepts
Steve Azzolin
Antonio Longa
Pietro Barbiero
Pietro Lio'
Andrea Passerini
25
54
0
13 Oct 2022
Variational Graph Generator for Multi-View Graph Clustering
Jianpeng Chen
Yawen Ling
Jie Xu
Yazhou Ren
Shudong Huang
X. Pu
Zhifeng Hao
Philip S. Yu
Lifang He
17
5
0
13 Oct 2022
Towards Prototype-Based Self-Explainable Graph Neural Network
Enyan Dai
Suhang Wang
25
12
0
05 Oct 2022
Spectral Augmentation for Self-Supervised Learning on Graphs
Lu Lin
Jinghui Chen
Hongning Wang
OOD
32
48
0
02 Oct 2022
L2XGNN: Learning to Explain Graph Neural Networks
G. Serra
Mathias Niepert
26
7
0
28 Sep 2022
Debiasing Graph Neural Networks via Learning Disentangled Causal Substructure
Shaohua Fan
Xiao Wang
Yanhu Mo
Chuan Shi
Jian Tang
CML
OOD
AI4CE
31
89
0
28 Sep 2022
Explainability in subgraphs-enhanced Graph Neural Networks
Michele Guerra
Indro Spinelli
Simone Scardapane
F. Bianchi
16
1
0
16 Sep 2022
GNNInterpreter: A Probabilistic Generative Model-Level Explanation for Graph Neural Networks
Xiaoqi Wang
Hang Shen
22
41
0
15 Sep 2022
Previous
1
2
3
4
5
6
Next