ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.05218
  4. Cited By
SeqMobile: A Sequence Based Efficient Android Malware Detection System
  Using RNN on Mobile Devices

SeqMobile: A Sequence Based Efficient Android Malware Detection System Using RNN on Mobile Devices

10 November 2020
Ruitao Feng
Jing Qiang Lim
Sen Chen
Shang-Wei Lin
Yang Liu
ArXivPDFHTML

Papers citing "SeqMobile: A Sequence Based Efficient Android Malware Detection System Using RNN on Mobile Devices"

5 / 5 papers shown
Title
Multi-label Classification for Android Malware Based on Active Learning
Multi-label Classification for Android Malware Based on Active Learning
Qijing Qiao
Ruitao Feng
Sen Chen
Fei Zhang
Xiaohong Li
22
7
0
09 Oct 2024
Deep Learning Models for Detecting Malware Attacks
Deep Learning Models for Detecting Malware Attacks
Pascal Maniriho
A. N. Mahmood
M. Chowdhury
AAML
16
5
0
08 Sep 2022
Contrastive Learning for Robust Android Malware Familial Classification
Contrastive Learning for Robust Android Malware Familial Classification
Yueming Wu
Shihan Dou
Deqing Zou
Wei Yang
Weizhong Qiang
Hai Jin
AAML
14
13
0
08 Jul 2021
A Performance-Sensitive Malware Detection System Using Deep Learning on
  Mobile Devices
A Performance-Sensitive Malware Detection System Using Deep Learning on Mobile Devices
Ruitao Feng
Sen Chen
Xiaofei Xie
Guozhu Meng
Shang-Wei Lin
Yang Liu
28
102
0
11 May 2020
Why an Android App is Classified as Malware? Towards Malware
  Classification Interpretation
Why an Android App is Classified as Malware? Towards Malware Classification Interpretation
Bozhi Wu
Sen Chen
Cuiyun Gao
Lingling Fan
Yang Liu
W. Wen
Michael R. Lyu
31
54
0
24 Apr 2020
1