ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.07122
  4. Cited By
Convergence Properties of Stochastic Hypergradients

Convergence Properties of Stochastic Hypergradients

13 November 2020
Riccardo Grazzi
Massimiliano Pontil
Saverio Salzo
ArXivPDFHTML

Papers citing "Convergence Properties of Stochastic Hypergradients"

11 / 11 papers shown
Title
Bilevel reinforcement learning via the development of hyper-gradient without lower-level convexity
Bilevel reinforcement learning via the development of hyper-gradient without lower-level convexity
Yan Yang
Bin Gao
Ya-xiang Yuan
38
2
0
30 May 2024
Achieving Hierarchy-Free Approximation for Bilevel Programs With
  Equilibrium Constraints
Achieving Hierarchy-Free Approximation for Bilevel Programs With Equilibrium Constraints
Jiayang Li
J. Yu
Boyi Liu
Zhaoran Wang
Y. Nie
27
6
0
20 Feb 2023
Analyzing Inexact Hypergradients for Bilevel Learning
Analyzing Inexact Hypergradients for Bilevel Learning
Matthias Joachim Ehrhardt
Lindon Roberts
18
8
0
11 Jan 2023
Passage-Mask: A Learnable Regularization Strategy for Retriever-Reader
  Models
Passage-Mask: A Learnable Regularization Strategy for Retriever-Reader Models
Shujian Zhang
Chengyue Gong
Xingchao Liu
RALM
37
6
0
02 Nov 2022
iDARTS: Differentiable Architecture Search with Stochastic Implicit
  Gradients
iDARTS: Differentiable Architecture Search with Stochastic Implicit Gradients
Miao Zhang
Steven W. Su
Shirui Pan
Xiaojun Chang
Ehsan Abbasnejad
Reza Haffari
10
68
0
21 Jun 2021
Reward Optimization for Neural Machine Translation with Learned Metrics
Reward Optimization for Neural Machine Translation with Learned Metrics
Raphael Shu
Kang Min Yoo
Jung-Woo Ha
27
12
0
15 Apr 2021
Investigating Bi-Level Optimization for Learning and Vision from a
  Unified Perspective: A Survey and Beyond
Investigating Bi-Level Optimization for Learning and Vision from a Unified Perspective: A Survey and Beyond
Risheng Liu
Jiaxin Gao
Jin Zhang
Deyu Meng
Zhouchen Lin
AI4CE
43
221
0
27 Jan 2021
New Convergence Aspects of Stochastic Gradient Algorithms
New Convergence Aspects of Stochastic Gradient Algorithms
Lam M. Nguyen
Phuong Ha Nguyen
Peter Richtárik
K. Scheinberg
Martin Takáč
Marten van Dijk
23
65
0
10 Nov 2018
Bilevel Programming for Hyperparameter Optimization and Meta-Learning
Bilevel Programming for Hyperparameter Optimization and Meta-Learning
Luca Franceschi
P. Frasconi
Saverio Salzo
Riccardo Grazzi
Massimiliano Pontil
99
716
0
13 Jun 2018
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
290
11,681
0
09 Mar 2017
Forward and Reverse Gradient-Based Hyperparameter Optimization
Forward and Reverse Gradient-Based Hyperparameter Optimization
Luca Franceschi
Michele Donini
P. Frasconi
Massimiliano Pontil
124
405
0
06 Mar 2017
1