Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2011.07931
Cited By
Do Offline Metrics Predict Online Performance in Recommender Systems?
7 November 2020
K. Krauth
Sarah Dean
Alex Zhao
Wenshuo Guo
Mihaela Curmei
Benjamin Recht
Michael I. Jordan
OffRL
Re-assign community
ArXiv (abs)
PDF
HTML
Github (66★)
Papers citing
"Do Offline Metrics Predict Online Performance in Recommender Systems?"
24 / 24 papers shown
Title
Overcoming the Price of Anarchy by Steering with Recommendations
Cesare Carissimo
Marcin Korecki
Damian Dailisan
91
0
0
26 Feb 2025
Harm Mitigation in Recommender Systems under User Preference Dynamics
Jerry Chee
Shankar Kalyanaraman
S. Ernala
Udi Weinsberg
Sarah Dean
Stratis Ioannidis
79
5
0
14 Jun 2024
Accounting for AI and Users Shaping One Another: The Role of Mathematical Models
Sarah Dean
Evan Dong
Meena Jagadeesan
Liu Leqi
82
8
0
18 Apr 2024
DPR: An Algorithm Mitigate Bias Accumulation in Recommendation feedback loops
Hangtong Xu
Yuanbo Xu
Yongjian Yang
Fuzhen Zhuang
Hui Xiong
55
1
0
10 Nov 2023
Butterfly Effects of SGD Noise: Error Amplification in Behavior Cloning and Autoregression
Adam Block
Dylan J. Foster
Akshay Krishnamurthy
Max Simchowitz
Cyril Zhang
77
7
0
17 Oct 2023
Interface Design to Mitigate Inflation in Recommender Systems
Rana Shahout
Yehonatan Peisakhovsky
Sasha Stoikov
Nikhil Garg
38
2
0
23 Jul 2023
Simulating News Recommendation Ecosystem for Fun and Profit
Guangping Zhang
Dongsheng Li
Hansu Gu
Tun Lu
Li Shang
Ning Gu
37
0
0
23 May 2023
Counterfactual Augmentation for Multimodal Learning Under Presentation Bias
Victoria Lin
Louis-Philippe Morency
Dimitrios Dimitriadis
Srinagesh Sharma
CML
58
1
0
23 May 2023
Algorithmic Censoring in Dynamic Learning Systems
Jennifer Chien
Margaret E. Roberts
Berk Ustun
72
6
0
15 May 2023
When Newer is Not Better: Does Deep Learning Really Benefit Recommendation From Implicit Feedback?
Yushun Dong
Jundong Li
Tobias Schnabel
81
9
0
02 May 2023
Cross-Dataset Propensity Estimation for Debiasing Recommender Systems
Fengyu Li
Sarah Dean
21
0
0
22 Dec 2022
Learning to Suggest Breaks: Sustainable Optimization of Long-Term User Engagement
Eden Saig
Nir Rosenfeld
62
4
0
24 Nov 2022
Towards Psychologically-Grounded Dynamic Preference Models
Mihaela Curmei
Andreas A. Haupt
Dylan Hadfield-Menell
Benjamin Recht
43
15
0
01 Aug 2022
Breaking Feedback Loops in Recommender Systems with Causal Inference
K. Krauth
Yixin Wang
Michael I. Jordan
CML
92
19
0
04 Jul 2022
Modeling Content Creator Incentives on Algorithm-Curated Platforms
Jiri Hron
K. Krauth
Michael I. Jordan
Niki Kilbertus
Sarah Dean
112
40
0
27 Jun 2022
Synthetic Data-Based Simulators for Recommender Systems: A Survey
Elizaveta Stavinova
A. Grigorievskiy
A. Volodkevich
P. Chunaev
Klavdiya Olegovna Bochenina
D. Bugaychenko
SyDa
69
8
0
22 Jun 2022
In the Eye of the Beholder: Robust Prediction with Causal User Modeling
Amir Feder
G. Horowitz
Yoav Wald
Roi Reichart
Nir Rosenfeld
OOD
97
7
0
01 Jun 2022
Preference Dynamics Under Personalized Recommendations
Sarah Dean
Jamie Morgenstern
140
35
0
25 May 2022
Fair ranking: a critical review, challenges, and future directions
Gourab K. Patro
Lorenzo Porcaro
Laura Mitchell
Qiuyue Zhang
Meike Zehlike
Nikhil Garg
76
56
0
29 Jan 2022
T-RECS: A Simulation Tool to Study the Societal Impact of Recommender Systems
Eli Lucherini
Matthew Sun
Amy A. Winecoff
Arvind Narayanan
85
23
0
19 Jul 2021
Quantifying Availability and Discovery in Recommender Systems via Stochastic Reachability
Mihaela Curmei
Sarah Dean
Benjamin Recht
34
8
0
30 Jun 2021
On component interactions in two-stage recommender systems
Jiri Hron
K. Krauth
Michael I. Jordan
Niki Kilbertus
CML
LRM
74
31
0
28 Jun 2021
The Stereotyping Problem in Collaboratively Filtered Recommender Systems
Wenshuo Guo
K. Krauth
Michael I. Jordan
N. Garg
63
15
0
23 Jun 2021
Contextual Bandits with Sparse Data in Web setting
Björn Eriksson
17
0
0
06 May 2021
1