ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.09317
  4. Cited By
Optimized Auxiliary Particle Filters: adapting mixture proposals via
  convex optimization
v1v2 (latest)

Optimized Auxiliary Particle Filters: adapting mixture proposals via convex optimization

18 November 2020
Nicola Branchini
Victor Elvira
ArXiv (abs)PDFHTML

Papers citing "Optimized Auxiliary Particle Filters: adapting mixture proposals via convex optimization"

10 / 10 papers shown
Title
Learning state and proposal dynamics in state-space models using differentiable particle filters and neural networks
Learning state and proposal dynamics in state-space models using differentiable particle filters and neural networks
Benjamin Cox
Santiago Segarra
Victor Elvira
154
0
0
23 Nov 2024
Sparse Bayesian Estimation of Parameters in Linear-Gaussian State-Space
  Models
Sparse Bayesian Estimation of Parameters in Linear-Gaussian State-Space Models
Benjamin Cox
Victor Elvira
64
10
0
20 Jun 2023
Designing Proposal Distributions for Particle Filters using Integrated
  Nested Laplace Approximation
Designing Proposal Distributions for Particle Filters using Integrated Nested Laplace Approximation
A. Amri
53
1
0
05 May 2023
Properties of Marginal Sequential Monte Carlo Methods
Properties of Marginal Sequential Monte Carlo Methods
F. R. Crucinio
A. M. Johansen
49
3
0
06 Mar 2023
Differentiable Bootstrap Particle Filters for Regime-Switching Models
Differentiable Bootstrap Particle Filters for Regime-Switching Models
Wenhan Li
Xiongjie Chen
Wenwu Wang
Victor Elvira
Yunpeng Li
74
6
0
20 Feb 2023
An overview of differentiable particle filters for data-adaptive
  sequential Bayesian inference
An overview of differentiable particle filters for data-adaptive sequential Bayesian inference
Xiongjie Chen
Yunpeng Li
78
15
0
19 Feb 2023
Unsupervised Learning of Sampling Distributions for Particle Filters
Unsupervised Learning of Sampling Distributions for Particle Filters
Fernando Gama
Nicolas Zilberstein
Martín Sevilla
Richard Baraniuk
Santiago Segarra
91
10
0
02 Feb 2023
The Lifebelt Particle Filter for robust estimation from low-valued count
  data
The Lifebelt Particle Filter for robust estimation from low-valued count data
Alice Corbella
T. McKinley
Paul J. Birrell
A. Presanis
S. Spencer
Gareth O. Roberts
Daniela De Angelis
40
1
0
08 Dec 2022
Graphical Inference in Linear-Gaussian State-Space Models
Graphical Inference in Linear-Gaussian State-Space Models
Victor Elvira
Émilie Chouzenoux
30
16
0
20 Sep 2022
Variational Marginal Particle Filters
Variational Marginal Particle Filters
Jinlin Lai
Justin Domke
Daniel Sheldon
92
9
0
30 Sep 2021
1