ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.12844
  4. Cited By
Physics-informed neural networks for myocardial perfusion MRI
  quantification

Physics-informed neural networks for myocardial perfusion MRI quantification

25 November 2020
R. L. M. V. Herten
A. Chiribiri
M. Breeuwer
M. Veta
C. Scannell
ArXivPDFHTML

Papers citing "Physics-informed neural networks for myocardial perfusion MRI quantification"

13 / 13 papers shown
Title
PINNing Cerebral Blood Flow: Analysis of Perfusion MRI in Infants using
  Physics-Informed Neural Networks
PINNing Cerebral Blood Flow: Analysis of Perfusion MRI in Infants using Physics-Informed Neural Networks
C. Galazis
Ching-En Chiu
Tomoki Arichi
Anil A. Bharath
Marta Varela
27
0
0
11 Oct 2024
Point Neuron Learning: A New Physics-Informed Neural Network
  Architecture
Point Neuron Learning: A New Physics-Informed Neural Network Architecture
Hanwen Bi
T. Abhayapala
PINN
21
3
0
30 Aug 2024
Gradient Flow Based Phase-Field Modeling Using Separable Neural Networks
Gradient Flow Based Phase-Field Modeling Using Separable Neural Networks
R. Mattey
Susanta Ghosh
AI4CE
40
1
0
09 May 2024
Learning Traveling Solitary Waves Using Separable Gaussian Neural
  Networks
Learning Traveling Solitary Waves Using Separable Gaussian Neural Networks
Siyuan Xing
E. Charalampidis
18
0
0
07 Mar 2024
Med-Real2Sim: Non-Invasive Medical Digital Twins using Physics-Informed
  Self-Supervised Learning
Med-Real2Sim: Non-Invasive Medical Digital Twins using Physics-Informed Self-Supervised Learning
Keying Kuang
Frances Dean
Jack B. Jedlicki
David Ouyang
Anthony Philippakis
David Sontag
Ahmed M. Alaa
SyDa
PINN
26
0
0
29 Feb 2024
Quantitative Analysis of Molecular Transport in the Extracellular Space
  Using Physics-Informed Neural Network
Quantitative Analysis of Molecular Transport in the Extracellular Space Using Physics-Informed Neural Network
Jiayi Xie
Hongfeng Li
Jin Cheng
Qingrui Cai
Hanbo Tan
Lingyun Zu
Xiaobo Qu
Hongbin Han
30
2
0
23 Jan 2024
Physics-Informed Computer Vision: A Review and Perspectives
Physics-Informed Computer Vision: A Review and Perspectives
C. Banerjee
Kien Nguyen
Clinton Fookes
G. Karniadakis
PINN
AI4CE
34
28
0
29 May 2023
An Analysis of Physics-Informed Neural Networks
An Analysis of Physics-Informed Neural Networks
E. Small
PINN
11
1
0
06 Mar 2023
Utilising physics-guided deep learning to overcome data scarcity
Utilising physics-guided deep learning to overcome data scarcity
Jinshuai Bai
Laith Alzubaidi
Qingxia Wang
E. Kuhl
Bennamoun
Yuantong T. Gu
PINN
AI4CE
26
3
0
24 Nov 2022
Mitigating Propagation Failures in Physics-informed Neural Networks
  using Retain-Resample-Release (R3) Sampling
Mitigating Propagation Failures in Physics-informed Neural Networks using Retain-Resample-Release (R3) Sampling
Arka Daw
Jie Bu
Sifan Wang
P. Perdikaris
Anuj Karpatne
AI4CE
14
44
0
05 Jul 2022
Physics-driven Synthetic Data Learning for Biomedical Magnetic Resonance
Physics-driven Synthetic Data Learning for Biomedical Magnetic Resonance
Qinqin Yang
Zi Wang
Kunyuan Guo
C. Cai
X. Qu
PINN
OOD
MedIm
AI4CE
29
57
0
21 Mar 2022
Towards Optimally Weighted Physics-Informed Neural Networks in Ocean
  Modelling
Towards Optimally Weighted Physics-Informed Neural Networks in Ocean Modelling
T. Wolff
Hugo Carrillo Lincopi
Luis Martí
Nayat Sánchez-Pi
PINN
AI4CE
16
12
0
16 Jun 2021
Improved unsupervised physics-informed deep learning for intravoxel
  incoherent motion modeling and evaluation in pancreatic cancer patients
Improved unsupervised physics-informed deep learning for intravoxel incoherent motion modeling and evaluation in pancreatic cancer patients
Misha P. T. Kaandorp
S. Barbieri
R. Klaassen
H. Laarhoven
H. Crezee
P. T. While
A. Nederveen
O. Gurney-Champion
6
75
0
03 Nov 2020
1