ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.15007
  4. Cited By
RealCause: Realistic Causal Inference Benchmarking
v1v2 (latest)

RealCause: Realistic Causal Inference Benchmarking

30 November 2020
Brady Neal
Chin-Wei Huang
Sunand Raghupathi
    CMLELM
ArXiv (abs)PDFHTML

Papers citing "RealCause: Realistic Causal Inference Benchmarking"

34 / 34 papers shown
Beyond Multiple Choice: Verifiable OpenQA for Robust Vision-Language RFT
Beyond Multiple Choice: Verifiable OpenQA for Robust Vision-Language RFT
Y. Liu
Hao Li
Haiyu Xu
Baoqi Pei
Jiahao Wang
...
Zheqi He
JG Yao
Bowen Qin
Xi Yang
J. Zhang
OffRL
340
0
0
21 Nov 2025
Improving Generative Methods for Causal Evaluation via Simulation-Based Inference
Improving Generative Methods for Causal Evaluation via Simulation-Based Inference
Pracheta Amaranath
Vinitra Muralikrishnan
Amit Sharma
David D. Jensen
CML
116
0
0
02 Sep 2025
ProCause: Generating Counterfactual Outcomes to Evaluate Prescriptive Process Monitoring Methods
ProCause: Generating Counterfactual Outcomes to Evaluate Prescriptive Process Monitoring Methods
Jakob De Moor
Hans Weytjens
Johannes De Smedt
CML
78
0
0
31 Aug 2025
Position: Causal Machine Learning Requires Rigorous Synthetic Experiments for Broader Adoption
Position: Causal Machine Learning Requires Rigorous Synthetic Experiments for Broader Adoption
Audrey Poinsot
Panayiotis Panayiotou
Alessandro Leite
Nicolas Chesneau
Özgür Şimşek
Marc Schoenauer
CMLELM
129
0
0
12 Aug 2025
Frugal, Flexible, Faithful: Causal Data Simulation via Frengression
Frugal, Flexible, Faithful: Causal Data Simulation via Frengression
Linying Yang
Robin J. Evans
Xinwei Shen
OOD
148
0
0
01 Aug 2025
CausalPFN: Amortized Causal Effect Estimation via In-Context Learning
CausalPFN: Amortized Causal Effect Estimation via In-Context Learning
Vahid Balazadeh
Hamidreza Kamkari
Valentin Thomas
Benson Li
Junwei Ma
Jesse C. Cresswell
Rahul G. Krishnan
CML
194
6
0
09 Jun 2025
Do-PFN: In-Context Learning for Causal Effect Estimation
Do-PFN: In-Context Learning for Causal Effect Estimation
Jake Robertson
Arik Reuter
Siyuan Guo
Noah Hollmann
Katharina Eggensperger
Bernhard Schölkopf
CML
422
8
0
06 Jun 2025
SimBank: from Simulation to Solution in Prescriptive Process Monitoring
SimBank: from Simulation to Solution in Prescriptive Process Monitoring
Jakob De Moor
Hans Weytjens
Johannes De Smedt
Jochen De Weerdt
233
2
0
28 Mar 2025
CausalRivers -- Scaling up benchmarking of causal discovery for real-world time-series
CausalRivers -- Scaling up benchmarking of causal discovery for real-world time-seriesInternational Conference on Learning Representations (ICLR), 2025
Gideon Stein
M. Shadaydeh
Jan Blunk
Niklas Penzel
Joachim Denzler
AI4TS
286
6
0
21 Mar 2025
Marginal Causal Flows for Validation and Inference
Marginal Causal Flows for Validation and InferenceNeural Information Processing Systems (NeurIPS), 2024
Daniel de Vassimon Manela
Laura Battaglia
Robin J. Evans
CML
303
8
0
02 Nov 2024
DAG-aware Transformer for Causal Effect Estimation
DAG-aware Transformer for Causal Effect Estimation
Manqing Liu
David R. Bellamy
Andrew L. Beam
CML
248
5
0
13 Oct 2024
Hierarchical Bias-Driven Stratification for Interpretable Causal Effect
  Estimation
Hierarchical Bias-Driven Stratification for Interpretable Causal Effect Estimation
Lucile Ter-Minassian
Liran Szlak
Ehud Karavani
Chris Holmes
Y. Shimoni
128
2
0
31 Jan 2024
SpaCE: The Spatial Confounding Environment
SpaCE: The Spatial Confounding EnvironmentInternational Conference on Learning Representations (ICLR), 2023
Mauricio Tec
A. Trisovic
Michelle Audirac
Sophie Woodward
Jie Kate Hu
N. Khoshnevis
Francesca Dominici
CML
314
4
0
01 Dec 2023
Can You Rely on Your Model Evaluation? Improving Model Evaluation with
  Synthetic Test Data
Can You Rely on Your Model Evaluation? Improving Model Evaluation with Synthetic Test DataNeural Information Processing Systems (NeurIPS), 2023
B. V. Breugel
Nabeel Seedat
F. Imrie
M. Schaar
SyDa
211
36
0
25 Oct 2023
Towards Causal Foundation Model: on Duality between Causal Inference and
  Attention
Towards Causal Foundation Model: on Duality between Causal Inference and Attention
Jiaqi Zhang
Joel Jennings
Agrin Hilmkil
Nick Pawlowski
Cheng Zhang
Chao Ma
CML
347
16
0
01 Oct 2023
RCT Rejection Sampling for Causal Estimation Evaluation
RCT Rejection Sampling for Causal Estimation Evaluation
Katherine A. Keith
Sergey Feldman
David Jurgens
Jonathan Bragg
Rohit Bhattacharya
CML
322
10
0
27 Jul 2023
Prescriptive Process Monitoring Under Resource Constraints: A
  Reinforcement Learning Approach
Prescriptive Process Monitoring Under Resource Constraints: A Reinforcement Learning Approach
Mahmoud Shoush
Marlon Dumas
258
7
0
13 Jul 2023
Benchmarking Bayesian Causal Discovery Methods for Downstream Treatment
  Effect Estimation
Benchmarking Bayesian Causal Discovery Methods for Downstream Treatment Effect Estimation
Chris C. Emezue
Alexandre Drouin
T. Deleu
Stefan Bauer
Yoshua Bengio
CML
324
2
0
11 Jul 2023
Timing Process Interventions with Causal Inference and Reinforcement
  Learning
Timing Process Interventions with Causal Inference and Reinforcement Learning
Hans Weytjens
Wouter Verbeke
Jochen De Weerdt
OffRL
285
2
0
07 Jun 2023
Counterfactual Generative Models for Time-Varying Treatments
Counterfactual Generative Models for Time-Varying TreatmentsKnowledge Discovery and Data Mining (KDD), 2023
Shenghao Wu
Wen-liang Zhou
Minshuo Chen
Shixiang Zhu
DiffMCML
509
12
0
25 May 2023
Learning When to Treat Business Processes: Prescriptive Process
  Monitoring with Causal Inference and Reinforcement Learning
Learning When to Treat Business Processes: Prescriptive Process Monitoring with Causal Inference and Reinforcement LearningInternational Conference on Advanced Information Systems Engineering (CAiSE), 2023
Z. Bozorgi
Marlon Dumas
M. Rosa
Artem Polyvyanyy
Mahmoud Shoush
Irene Teinemaa
CML
102
14
0
07 Mar 2023
The Challenges of Hyperparameter Tuning for Accurate Causal Effect Estimation
The Challenges of Hyperparameter Tuning for Accurate Causal Effect Estimation
Damian Machlanski
Spyridon Samothrakis
Paul Clarke
ELMCML
231
9
0
02 Mar 2023
CausalBench: A Large-scale Benchmark for Network Inference from
  Single-cell Perturbation Data
CausalBench: A Large-scale Benchmark for Network Inference from Single-cell Perturbation Data
Mathieu Chevalley
Yusuf Roohani
Arash Mehrjou
J. Leskovec
Patrick Schwab
CML
282
43
0
31 Oct 2022
Membership Inference Attacks and Generalization: A Causal Perspective
Membership Inference Attacks and Generalization: A Causal PerspectiveConference on Computer and Communications Security (CCS), 2022
Teodora Baluta
Shiqi Shen
S. Hitarth
Shruti Tople
Prateek Saxena
OODMIACV
248
28
0
18 Sep 2022
Quantitative probing: Validating causal models using quantitative domain
  knowledge
Quantitative probing: Validating causal models using quantitative domain knowledgeJournal of Causal Inference (JCI), 2022
Daniel Grünbaum
M. L. Stern
E. Lang
194
8
0
07 Sep 2022
Undersmoothing Causal Estimators with Generative Trees
Undersmoothing Causal Estimators with Generative TreesIEEE Access (IEEE Access), 2022
Damian Machlanski
Spyridon Samothrakis
Paul Clarke
CML
290
1
0
16 Mar 2022
Validating Causal Inference Methods
Validating Causal Inference MethodsInternational Conference on Machine Learning (ICML), 2022
Harsh Parikh
Carlos Varjao
Louise Xu
E. T. Tchetgen
CML
489
34
0
09 Feb 2022
ADCB: An Alzheimer's disease benchmark for evaluating observational
  estimators of causal effects
ADCB: An Alzheimer's disease benchmark for evaluating observational estimators of causal effects
N. M. Kinyanjui
Fredrik D. Johansson
CML
153
0
0
12 Nov 2021
A pragmatic approach to estimating average treatment effects from EHR
  data: the effect of prone positioning on mechanically ventilated COVID-19
  patients
A pragmatic approach to estimating average treatment effects from EHR data: the effect of prone positioning on mechanically ventilated COVID-19 patients
A. Izdebski
P. Thoral
R. Lalisang
Dean McHugh
D. Gommers
...
Rutger van Raalte
M. V. Tellingen
Niels C. Gritters van den Oever
Paul Elbers
Giovanni Cina
CML
116
0
0
14 Sep 2021
DoWhy: Addressing Challenges in Expressing and Validating Causal
  Assumptions
DoWhy: Addressing Challenges in Expressing and Validating Causal Assumptions
Amit Sharma
Vasilis Syrgkanis
Cheng Zhang
Emre Kıcıman
209
34
0
27 Aug 2021
Doing Great at Estimating CATE? On the Neglected Assumptions in
  Benchmark Comparisons of Treatment Effect Estimators
Doing Great at Estimating CATE? On the Neglected Assumptions in Benchmark Comparisons of Treatment Effect Estimators
Alicia Curth
M. Schaar
CML
126
7
0
28 Jul 2021
Causal Effect Inference for Structured Treatments
Causal Effect Inference for Structured TreatmentsNeural Information Processing Systems (NeurIPS), 2021
Jean Kaddour
Yuchen Zhu
Qi Liu
Matt J. Kusner
Ricardo M. A. Silva
CML
486
53
0
03 Jun 2021
Generating Synthetic Text Data to Evaluate Causal Inference Methods
Generating Synthetic Text Data to Evaluate Causal Inference Methods
Zach Wood-Doughty
I. Shpitser
Mark Dredze
SyDaCML
194
12
0
10 Feb 2021
Automated versus do-it-yourself methods for causal inference: Lessons
  learned from a data analysis competition
Automated versus do-it-yourself methods for causal inference: Lessons learned from a data analysis competition
Vincent Dorie
J. Hill
Uri Shalit
M. Scott
D. Cervone
CML
754
316
0
09 Jul 2017
1