ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.00656
9
0

Cross-modal registration using point clouds and graph-matching in the context of correlative microscopies

1 December 2020
Stephan Kunne
Guillaume Potier
Jean Mérot
P. Paul-Gilloteaux
    3DPC
ArXivPDFHTML
Abstract

Correlative microscopy aims at combining two or more modalities to gain more information than the one provided by one modality on the same biological structure. Registration is needed at different steps of correlative microscopies workflows. Biologists want to select the image content used for registration not to introduce bias in the correlation of unknown structures. Intensity-based methods might not allow this selection and might be too slow when the images are very large. We propose an approach based on point clouds created from selected content by the biologist. These point clouds may be prone to big differences in densities but also missing parts and outliers. In this paper we present a method of registration for point clouds based on graph building and graph matching, and compare the method to iterative closest point based methods.

View on arXiv
Comments on this paper