ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.01386
  4. Cited By
A Self-Supervised Feature Map Augmentation (FMA) Loss and Combined
  Augmentations Finetuning to Efficiently Improve the Robustness of CNNs

A Self-Supervised Feature Map Augmentation (FMA) Loss and Combined Augmentations Finetuning to Efficiently Improve the Robustness of CNNs

2 December 2020
Nikhil Kapoor
C. Yuan
Jonas Löhdefink
Roland S. Zimmermann
Serin Varghese
Fabian Hüger
Nico M. Schmidt
Peter Schlicht
Tim Fingscheidt
    AAML
ArXivPDFHTML

Papers citing "A Self-Supervised Feature Map Augmentation (FMA) Loss and Combined Augmentations Finetuning to Efficiently Improve the Robustness of CNNs"

Title
No papers