ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.01558
  4. Cited By
From a Fourier-Domain Perspective on Adversarial Examples to a Wiener
  Filter Defense for Semantic Segmentation

From a Fourier-Domain Perspective on Adversarial Examples to a Wiener Filter Defense for Semantic Segmentation

2 December 2020
Nikhil Kapoor
Andreas Bär
Serin Varghese
Jan David Schneider
Fabian Hüger
Peter Schlicht
Tim Fingscheidt
    AAML
ArXivPDFHTML

Papers citing "From a Fourier-Domain Perspective on Adversarial Examples to a Wiener Filter Defense for Semantic Segmentation"

4 / 4 papers shown
Title
How Does Frequency Bias Affect the Robustness of Neural Image
  Classifiers against Common Corruption and Adversarial Perturbations?
How Does Frequency Bias Affect the Robustness of Neural Image Classifiers against Common Corruption and Adversarial Perturbations?
Alvin Chan
Yew-Soon Ong
Clement Tan
AAML
24
13
0
09 May 2022
The Vulnerability of Semantic Segmentation Networks to Adversarial
  Attacks in Autonomous Driving: Enhancing Extensive Environment Sensing
The Vulnerability of Semantic Segmentation Networks to Adversarial Attacks in Autonomous Driving: Enhancing Extensive Environment Sensing
Andreas Bär
Jonas Löhdefink
Nikhil Kapoor
Serin Varghese
Fabian Hüger
Peter Schlicht
Tim Fingscheidt
AAML
106
33
0
11 Jan 2021
Shield: Fast, Practical Defense and Vaccination for Deep Learning using
  JPEG Compression
Shield: Fast, Practical Defense and Vaccination for Deep Learning using JPEG Compression
Nilaksh Das
Madhuri Shanbhogue
Shang-Tse Chen
Fred Hohman
Siwei Li
Li-Wei Chen
Michael E. Kounavis
Duen Horng Chau
FedML
AAML
40
224
0
19 Feb 2018
Adversarial Machine Learning at Scale
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
261
3,109
0
04 Nov 2016
1