ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.02232
  4. Cited By
Graph Convolutional Neural Networks for Body Force Prediction

Graph Convolutional Neural Networks for Body Force Prediction

3 December 2020
Francis Ogoke
Kazem Meidani
Amirreza Hashemi
A. Farimani
    GNN
    AI4CE
ArXivPDFHTML

Papers citing "Graph Convolutional Neural Networks for Body Force Prediction"

7 / 7 papers shown
Title
Machine learning for modelling unstructured grid data in computational physics: a review
Machine learning for modelling unstructured grid data in computational physics: a review
Sibo Cheng
Marc Bocquet
Weiping Ding
Tobias S. Finn
Rui Fu
...
Yong Zeng
Mingrui Zhang
Hao Zhou
Kewei Zhu
Rossella Arcucci
PINN
AI4CE
107
0
0
13 Feb 2025
Enhancing Graph U-Nets for Mesh-Agnostic Spatio-Temporal Flow Prediction
Enhancing Graph U-Nets for Mesh-Agnostic Spatio-Temporal Flow Prediction
Sunwoong Yang
Ricardo Vinuesa
Namwoo Kang
AI4CE
41
4
0
06 Jun 2024
Learning to simulate partially known spatio-temporal dynamics with
  trainable difference operators
Learning to simulate partially known spatio-temporal dynamics with trainable difference operators
Xiang Huang
Zhuoyuan Li
Hongsheng Liu
Zidong Wang
Hongye Zhou
Bin Dong
Bei Hua
AI4TS
AI4CE
27
1
0
26 Jul 2023
Transformer for Partial Differential Equations' Operator Learning
Transformer for Partial Differential Equations' Operator Learning
Zijie Li
Kazem Meidani
A. Farimani
40
140
0
26 May 2022
Flow Completion Network: Inferring the Fluid Dynamics from Incomplete
  Flow Information using Graph Neural Networks
Flow Completion Network: Inferring the Fluid Dynamics from Incomplete Flow Information using Graph Neural Networks
Xiaodong He
Yinan Wang
Juan Li
GNN
14
19
0
10 May 2022
A physics and data co-driven surrogate modeling approach for temperature
  field prediction on irregular geometric domain
A physics and data co-driven surrogate modeling approach for temperature field prediction on irregular geometric domain
K. Bao
Wenjuan Yao
Xiaoya Zhang
Wei Peng
Yu Li
AI4CE
26
10
0
15 Mar 2022
Geometric deep learning on graphs and manifolds using mixture model CNNs
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
234
1,811
0
25 Nov 2016
1