ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.02459
  4. Cited By
Multiscale Mesh Deformation Component Analysis with Attention-based
  Autoencoders

Multiscale Mesh Deformation Component Analysis with Attention-based Autoencoders

4 December 2020
Jie Yang
Lin Gao
Qingyang Tan
Yihua Huang
Shi-hong Xia
Yu-Kun Lai
ArXivPDFHTML

Papers citing "Multiscale Mesh Deformation Component Analysis with Attention-based Autoencoders"

4 / 4 papers shown
Title
TapMo: Shape-aware Motion Generation of Skeleton-free Characters
TapMo: Shape-aware Motion Generation of Skeleton-free Characters
Jiaxu Zhang
Shaoli Huang
Zhigang Tu
Xin Chen
Xiaohang Zhan
Gang Yu
Ying Shan
21
9
0
19 Oct 2023
AttWalk: Attentive Cross-Walks for Deep Mesh Analysis
AttWalk: Attentive Cross-Walks for Deep Mesh Analysis
Ran Ben Izhak
Alon Lahav
A. Tal
3DV
29
10
0
23 Apr 2021
LCollision: Fast Generation of Collision-Free Human Poses using Learned
  Non-Penetration Constraints
LCollision: Fast Generation of Collision-Free Human Poses using Learned Non-Penetration Constraints
Qingyang Tan
Zherong Pan
Dinesh Manocha
3DH
14
10
0
06 Nov 2020
Geometric deep learning: going beyond Euclidean data
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
238
3,234
0
24 Nov 2016
1