ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.02938
14
27

Cirrus: A Long-range Bi-pattern LiDAR Dataset

5 December 2020
Ze Wang
Sihao Ding
Y. Li
J. Fenn
Sohini Roychowdhury
Andreas Wallin
Lane Martin
Scott Ryvola
Guillermo Sapiro
Qiang Qiu
    3DPC
    3DV
ArXivPDFHTML
Abstract

In this paper, we introduce Cirrus, a new long-range bi-pattern LiDAR public dataset for autonomous driving tasks such as 3D object detection, critical to highway driving and timely decision making. Our platform is equipped with a high-resolution video camera and a pair of LiDAR sensors with a 250-meter effective range, which is significantly longer than existing public datasets. We record paired point clouds simultaneously using both Gaussian and uniform scanning patterns. Point density varies significantly across such a long range, and different scanning patterns further diversify object representation in LiDAR. In Cirrus, eight categories of objects are exhaustively annotated in the LiDAR point clouds for the entire effective range. To illustrate the kind of studies supported by this new dataset, we introduce LiDAR model adaptation across different ranges, scanning patterns, and sensor devices. Promising results show the great potential of this new dataset to the robotics and computer vision communities.

View on arXiv
Comments on this paper