ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.03603
  4. Cited By
Ada-Segment: Automated Multi-loss Adaptation for Panoptic Segmentation

Ada-Segment: Automated Multi-loss Adaptation for Panoptic Segmentation

7 December 2020
Gengwei Zhang
Yiming Gao
Hang Xu
Hao Zhang
Zhenguo Li
Xiaodan Liang
    SSeg
ArXivPDFHTML

Papers citing "Ada-Segment: Automated Multi-loss Adaptation for Panoptic Segmentation"

35 / 35 papers shown
Title
Auto-Panoptic: Cooperative Multi-Component Architecture Search for
  Panoptic Segmentation
Auto-Panoptic: Cooperative Multi-Component Architecture Search for Panoptic Segmentation
Yangxin Wu
Gengwei Zhang
Hang Xu
Xiaodan Liang
Liang Lin
38
21
0
30 Oct 2020
Bidirectional Graph Reasoning Network for Panoptic Segmentation
Bidirectional Graph Reasoning Network for Panoptic Segmentation
Yangxin Wu
Gengwei Zhang
Yiming Gao
Xiajun Deng
Ke Gong
Xiaodan Liang
Liang Lin
27
57
0
14 Apr 2020
BANet: Bidirectional Aggregation Network with Occlusion Handling for
  Panoptic Segmentation
BANet: Bidirectional Aggregation Network with Occlusion Handling for Panoptic Segmentation
Yifeng Chen
Guangchen Lin
Songyuan Li
Omar Elfarouk Bourahla
Yiming Wu
Fangfang Wang
Junyi Feng
Mingliang Xu
Xi Li
ISeg
44
65
0
31 Mar 2020
SOGNet: Scene Overlap Graph Network for Panoptic Segmentation
SOGNet: Scene Overlap Graph Network for Panoptic Segmentation
Yibo Yang
Hongyang Li
Xia Li
Qijie Zhao
Jianlong Wu
Zhouchen Lin
ISeg
21
63
0
18 Nov 2019
SpatialFlow: Bridging All Tasks for Panoptic Segmentation
SpatialFlow: Bridging All Tasks for Panoptic Segmentation
Qiang Chen
Anda Cheng
Xiangyu He
Peisong Wang
Jian Cheng
65
30
0
19 Oct 2019
Panoptic-DeepLab
Panoptic-DeepLab
Bowen Cheng
Maxwell D. Collins
Yukun Zhu
Ting Liu
Thomas S. Huang
Hartwig Adam
Liang-Chieh Chen
30
610
0
10 Oct 2019
Learning Instance Occlusion for Panoptic Segmentation
Learning Instance Occlusion for Panoptic Segmentation
Justin Lazarow
Kwonjoon Lee
Kunyu Shi
Zhuowen Tu
ISeg
29
72
0
13 Jun 2019
AM-LFS: AutoML for Loss Function Search
AM-LFS: AutoML for Loss Function Search
Chuming Li
Yuan Xin
Chen Lin
Minghao Guo
Wei Wu
Wanli Ouyang
Junjie Yan
VLM
72
71
0
17 May 2019
Addressing the Loss-Metric Mismatch with Adaptive Loss Alignment
Addressing the Loss-Metric Mismatch with Adaptive Loss Alignment
Chen Huang
Shuangfei Zhai
Walter A. Talbott
Miguel Angel Bautista
Shi Sun
Carlos Guestrin
J. Susskind
34
75
0
15 May 2019
Seamless Scene Segmentation
Seamless Scene Segmentation
Lorenzo Porzi
Samuel Rota Buló
Aleksander Colovic
Peter Kontschieder
SSeg
44
209
0
03 May 2019
An End-to-End Network for Panoptic Segmentation
An End-to-End Network for Panoptic Segmentation
Huanyu Liu
Chao Peng
Changqian Yu
Jingbo Wang
Xuantong Liu
Gang Yu
Wei Jiang
ISeg
37
148
0
12 Mar 2019
UPSNet: A Unified Panoptic Segmentation Network
UPSNet: A Unified Panoptic Segmentation Network
Yuwen Xiong
Renjie Liao
Hengshuang Zhao
Rui Hu
Min Bai
Ersin Yumer
R. Urtasun
SSeg
31
429
0
12 Jan 2019
Panoptic Feature Pyramid Networks
Panoptic Feature Pyramid Networks
Alexander Kirillov
Ross B. Girshick
Kaiming He
Piotr Dollár
ISeg
SSeg
59
1,278
0
08 Jan 2019
Attention-guided Unified Network for Panoptic Segmentation
Attention-guided Unified Network for Panoptic Segmentation
Yanwei Li
Xinze Chen
Zheng Zhu
Lingxi Xie
Guan Huang
Dalong Du
Xingang Wang
27
279
0
10 Dec 2018
Deformable ConvNets v2: More Deformable, Better Results
Deformable ConvNets v2: More Deformable, Better Results
Xizhou Zhu
Han Hu
Stephen Lin
Jifeng Dai
ObjD
59
1,998
0
27 Nov 2018
AutoLoss: Learning Discrete Schedules for Alternate Optimization
AutoLoss: Learning Discrete Schedules for Alternate Optimization
Haowen Xu
Huatian Zhang
Zhiting Hu
Xiaodan Liang
Ruslan Salakhutdinov
Eric Xing
42
30
0
04 Oct 2018
BOHB: Robust and Efficient Hyperparameter Optimization at Scale
BOHB: Robust and Efficient Hyperparameter Optimization at Scale
Stefan Falkner
Aaron Klein
Frank Hutter
BDL
71
1,077
0
04 Jul 2018
Learning to Reweight Examples for Robust Deep Learning
Learning to Reweight Examples for Robust Deep Learning
Mengye Ren
Wenyuan Zeng
Binh Yang
R. Urtasun
OOD
NoLa
85
1,419
0
24 Mar 2018
Panoptic Segmentation
Panoptic Segmentation
Alexander Kirillov
Kaiming He
Ross B. Girshick
Carsten Rother
Piotr Dollár
69
1,425
0
03 Jan 2018
Cascade R-CNN: Delving into High Quality Object Detection
Cascade R-CNN: Delving into High Quality Object Detection
Zhaowei Cai
Nuno Vasconcelos
ObjD
88
4,885
0
03 Dec 2017
Population Based Training of Neural Networks
Population Based Training of Neural Networks
Max Jaderberg
Valentin Dalibard
Simon Osindero
Wojciech M. Czarnecki
Jeff Donahue
...
Tim Green
Iain Dunning
Karen Simonyan
Chrisantha Fernando
Koray Kavukcuoglu
30
736
0
27 Nov 2017
GradNorm: Gradient Normalization for Adaptive Loss Balancing in Deep
  Multitask Networks
GradNorm: Gradient Normalization for Adaptive Loss Balancing in Deep Multitask Networks
Zhao Chen
Vijay Badrinarayanan
Chen-Yu Lee
Andrew Rabinovich
ODL
58
1,272
0
07 Nov 2017
Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry
  and Semantics
Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics
Alex Kendall
Y. Gal
R. Cipolla
3DH
142
3,093
0
19 May 2017
Mask R-CNN
Mask R-CNN
Kaiming He
Georgia Gkioxari
Piotr Dollár
Ross B. Girshick
ObjD
215
27,018
0
20 Mar 2017
Deformable Convolutional Networks
Deformable Convolutional Networks
Jifeng Dai
Haozhi Qi
Yuwen Xiong
Yi Li
Guodong Zhang
Han Hu
Yichen Wei
162
5,291
0
17 Mar 2017
Online Learning Rate Adaptation with Hypergradient Descent
Online Learning Rate Adaptation with Hypergradient Descent
A. G. Baydin
R. Cornish
David Martínez-Rubio
Mark Schmidt
Frank Wood
ODL
37
245
0
14 Mar 2017
Feature Pyramid Networks for Object Detection
Feature Pyramid Networks for Object Detection
Nayeon Lee
Piotr Dollár
Ross B. Girshick
Kaiming He
Bharath Hariharan
Serge J. Belongie
ObjD
350
21,951
0
09 Dec 2016
UberNet: Training a `Universal' Convolutional Neural Network for Low-,
  Mid-, and High-Level Vision using Diverse Datasets and Limited Memory
UberNet: Training a `Universal' Convolutional Neural Network for Low-, Mid-, and High-Level Vision using Diverse Datasets and Limited Memory
Iasonas Kokkinos
SSeg
SSL
96
672
0
07 Sep 2016
Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization
Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization
Lisha Li
Kevin Jamieson
Giulia DeSalvo
Afshin Rostamizadeh
Ameet Talwalkar
99
2,307
0
21 Mar 2016
Hyperparameter optimization with approximate gradient
Hyperparameter optimization with approximate gradient
Fabian Pedregosa
74
449
0
07 Feb 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
682
192,638
0
10 Dec 2015
Delving Deep into Rectifiers: Surpassing Human-Level Performance on
  ImageNet Classification
Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
VLM
42
18,534
0
06 Feb 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
144
149,474
0
22 Dec 2014
ADADELTA: An Adaptive Learning Rate Method
ADADELTA: An Adaptive Learning Rate Method
Matthew D. Zeiler
ODL
58
6,619
0
22 Dec 2012
Practical Bayesian Optimization of Machine Learning Algorithms
Practical Bayesian Optimization of Machine Learning Algorithms
Jasper Snoek
Hugo Larochelle
Ryan P. Adams
191
7,883
0
13 Jun 2012
1