ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.04322
  4. Cited By
Quality-Diversity Optimization: a novel branch of stochastic
  optimization

Quality-Diversity Optimization: a novel branch of stochastic optimization

8 December 2020
Konstantinos Chatzilygeroudis
Antoine Cully
Vassilis Vassiliades
Jean-Baptiste Mouret
ArXivPDFHTML

Papers citing "Quality-Diversity Optimization: a novel branch of stochastic optimization"

10 / 10 papers shown
Title
Heterogeneous Multi-agent Zero-Shot Coordination by Coevolution
Heterogeneous Multi-agent Zero-Shot Coordination by Coevolution
Ke Xue
Yutong Wang
Cong Guan
Lei Yuan
Haobo Fu
Qiang Fu
Chao Qian
Yang Yu
40
16
0
03 Jan 2025
Imitation from Diverse Behaviors: Wasserstein Quality Diversity Imitation Learning with Single-Step Archive Exploration
Imitation from Diverse Behaviors: Wasserstein Quality Diversity Imitation Learning with Single-Step Archive Exploration
Xingrui Yu
Zhenglin Wan
David Mark Bossens
Yueming Lyu
Qing-Wu Guo
Ivor W. Tsang
53
0
0
11 Nov 2024
Preparing for Black Swans: The Antifragility Imperative for Machine
  Learning
Preparing for Black Swans: The Antifragility Imperative for Machine Learning
Ming Jin
27
2
0
18 May 2024
Illuminating the property space in crystal structure prediction using
  Quality-Diversity algorithms
Illuminating the property space in crystal structure prediction using Quality-Diversity algorithms
Marta Wolinska
Aron Walsh
Antoine Cully
30
1
0
06 Mar 2024
Bayesian Quality-Diversity approaches for constrained optimization
  problems with mixed continuous, discrete and categorical variables
Bayesian Quality-Diversity approaches for constrained optimization problems with mixed continuous, discrete and categorical variables
Loïc Brevault
M. Balesdent
25
2
0
11 Sep 2023
Q(D)O-ES: Population-based Quality (Diversity) Optimisation for Post Hoc
  Ensemble Selection in AutoML
Q(D)O-ES: Population-based Quality (Diversity) Optimisation for Post Hoc Ensemble Selection in AutoML
Lennart Purucker
Lennart Schneider
Marie Anastacio
Joeran Beel
B. Bischl
Holger Hoos
19
4
0
17 Jul 2023
Efficient Quality-Diversity Optimization through Diverse Quality Species
Efficient Quality-Diversity Optimization through Diverse Quality Species
Ryan Wickman
Bibek Poudel
Taylor Michael Villarreal
Xiaofei Zhang
Weizi Li
10
6
0
14 Apr 2023
Empirical analysis of PGA-MAP-Elites for Neuroevolution in Uncertain
  Domains
Empirical analysis of PGA-MAP-Elites for Neuroevolution in Uncertain Domains
Manon Flageat
Félix Chalumeau
Antoine Cully
15
26
0
24 Oct 2022
SafeAPT: Safe Simulation-to-Real Robot Learning using Diverse Policies
  Learned in Simulation
SafeAPT: Safe Simulation-to-Real Robot Learning using Diverse Policies Learned in Simulation
Rituraj Kaushik
Karol Arndt
Ville Kyrki
11
8
0
27 Jan 2022
Ensemble Feature Extraction for Multi-Container Quality-Diversity
  Algorithms
Ensemble Feature Extraction for Multi-Container Quality-Diversity Algorithms
L. Cazenille
11
9
0
03 May 2021
1