ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.05362
11
12

Kineverse: A Symbolic Articulation Model Framework for Model-Agnostic Mobile Manipulation

9 December 2020
Adrian Rofer
Georg Bartels
Wolfram Burgard
Abhinav Valada
Michael Beetz
ArXivPDFHTML
Abstract

Service robots in the future need to execute abstract instructions such as "fetch the milk from the fridge". To translate such instructions into actionable plans, robots require in-depth background knowledge. With regards to interactions with doors and drawers, robots require articulation models that they can use for state estimation and motion planning. Existing frameworks model articulated connections as abstract concepts such as prismatic, or revolute, but do not provide a parameterized model of these connections for computation. In this paper, we introduce a novel framework that uses symbolic mathematical expressions to model articulated structures -- robots and objects alike -- in a unified and extensible manner. We provide a theoretical description of this framework, and the operations that are supported by its models, and introduce an architecture to exchange our models in robotic applications, making them as flexible as any other environmental observation. To demonstrate the utility of our approach, we employ our practical implementation Kineverse for solving common robotics tasks from state estimation and mobile manipulation, and use it further in real-world mobile robot manipulation.

View on arXiv
Comments on this paper