ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.05417
  4. Cited By
An Efficient Asynchronous Method for Integrating Evolutionary and
  Gradient-based Policy Search

An Efficient Asynchronous Method for Integrating Evolutionary and Gradient-based Policy Search

10 December 2020
Kyunghyun Lee
Byeong-uk Lee
Ukcheol Shin
In So Kweon
ArXivPDFHTML

Papers citing "An Efficient Asynchronous Method for Integrating Evolutionary and Gradient-based Policy Search"

5 / 5 papers shown
Title
Evolutionary Strategy Guided Reinforcement Learning via MultiBuffer
  Communication
Evolutionary Strategy Guided Reinforcement Learning via MultiBuffer Communication
Adam Callaghan
Karl Mason
Patrick Mannion
29
2
0
20 Jun 2023
Supplementing Gradient-Based Reinforcement Learning with Simple
  Evolutionary Ideas
Supplementing Gradient-Based Reinforcement Learning with Simple Evolutionary Ideas
H. Khadilkar
19
0
0
10 May 2023
A Simple Decentralized Cross-Entropy Method
A Simple Decentralized Cross-Entropy Method
Zichen Zhang
Jun Jin
Martin Jägersand
Jun Luo
Dale Schuurmans
13
8
0
16 Dec 2022
DRL-ISP: Multi-Objective Camera ISP with Deep Reinforcement Learning
DRL-ISP: Multi-Objective Camera ISP with Deep Reinforcement Learning
Ukcheol Shin
Kyunghyun Lee
In So Kweon
VLM
3DV
35
2
0
07 Jul 2022
Learning to run a Power Network Challenge: a Retrospective Analysis
Learning to run a Power Network Challenge: a Retrospective Analysis
Antoine Marot
Benjamin Donnot
Gabriel Dulac-Arnold
A. Kelly
A. O'Sullivan
J. Viebahn
M. Awad
Isabelle M Guyon
P. Panciatici
Camilo Romero
14
77
0
02 Mar 2021
1