ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.05578
  4. Cited By
Large-Scale Generative Data-Free Distillation

Large-Scale Generative Data-Free Distillation

10 December 2020
Liangchen Luo
Mark Sandler
Zi Lin
A. Zhmoginov
Andrew G. Howard
ArXivPDFHTML

Papers citing "Large-Scale Generative Data-Free Distillation"

9 / 9 papers shown
Title
DKDM: Data-Free Knowledge Distillation for Diffusion Models with Any Architecture
DKDM: Data-Free Knowledge Distillation for Diffusion Models with Any Architecture
Qianlong Xiang
Miao Zhang
Yuzhang Shang
Jianlong Wu
Yan Yan
Liqiang Nie
DiffM
60
10
0
05 Sep 2024
Sampling to Distill: Knowledge Transfer from Open-World Data
Sampling to Distill: Knowledge Transfer from Open-World Data
Yuzheng Wang
Zhaoyu Chen
Jie M. Zhang
Dingkang Yang
Zuhao Ge
Yang Liu
Siao Liu
Yunquan Sun
Wenqiang Zhang
Lizhe Qi
26
9
0
31 Jul 2023
Image Captions are Natural Prompts for Text-to-Image Models
Image Captions are Natural Prompts for Text-to-Image Models
Shiye Lei
Hao Chen
Senyang Zhang
Bo-Lu Zhao
Dacheng Tao
VLM
24
19
0
17 Jul 2023
Is Synthetic Data From Diffusion Models Ready for Knowledge
  Distillation?
Is Synthetic Data From Diffusion Models Ready for Knowledge Distillation?
Zheng Li
Yuxuan Li
Penghai Zhao
Renjie Song
Xiang Li
Jian Yang
29
19
0
22 May 2023
Momentum Adversarial Distillation: Handling Large Distribution Shifts in
  Data-Free Knowledge Distillation
Momentum Adversarial Distillation: Handling Large Distribution Shifts in Data-Free Knowledge Distillation
Kien Do
Hung Le
D. Nguyen
Dang Nguyen
Haripriya Harikumar
T. Tran
Santu Rana
Svetha Venkatesh
18
32
0
21 Sep 2022
Few-Shot Unlearning by Model Inversion
Few-Shot Unlearning by Model Inversion
Youngsik Yoon
Jinhwan Nam
Hyojeong Yun
Jaeho Lee
Dongwoo Kim
Jungseul Ok
MU
20
17
0
31 May 2022
Synthesizing Informative Training Samples with GAN
Synthesizing Informative Training Samples with GAN
Bo-Lu Zhao
Hakan Bilen
DD
21
74
0
15 Apr 2022
Preventing Catastrophic Forgetting and Distribution Mismatch in
  Knowledge Distillation via Synthetic Data
Preventing Catastrophic Forgetting and Distribution Mismatch in Knowledge Distillation via Synthetic Data
Kuluhan Binici
N. Pham
T. Mitra
K. Leman
17
40
0
11 Aug 2021
Always Be Dreaming: A New Approach for Data-Free Class-Incremental
  Learning
Always Be Dreaming: A New Approach for Data-Free Class-Incremental Learning
James Smith
Yen-Chang Hsu
John C. Balloch
Yilin Shen
Hongxia Jin
Z. Kira
CLL
46
161
0
17 Jun 2021
1