ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.05893
  4. Cited By
Flatland-RL : Multi-Agent Reinforcement Learning on Trains

Flatland-RL : Multi-Agent Reinforcement Learning on Trains

10 December 2020
Sharada Mohanty
Erik Nygren
Florian Laurent
Manuel Schneider
Christian Scheller
Nilabha Bhattacharya
J. Watson
A. Egli
Christian Eichenberger
Christian Baumberger
Gereon Vienken
Irene Sturm
Guillaume Sartoretti
G. Spigler
    OffRL
ArXivPDFHTML

Papers citing "Flatland-RL : Multi-Agent Reinforcement Learning on Trains"

13 / 13 papers shown
Title
Mitigating the Stability-Plasticity Dilemma in Adaptive Train Scheduling with Curriculum-Driven Continual DQN Expansion
Mitigating the Stability-Plasticity Dilemma in Adaptive Train Scheduling with Curriculum-Driven Continual DQN Expansion
Achref Jaziri
Etienne Kunzel
Visvanathan Ramesh
CLL
53
0
0
19 Aug 2024
Airlift Challenge: A Competition for Optimizing Cargo Delivery
Airlift Challenge: A Competition for Optimizing Cargo Delivery
Adis Delanovic
Carmen Chiu
Andre Beckus
Marvin Gülhan
Jonathan Cawalla
Andre Beckus
19
0
0
26 Apr 2024
Terraforming -- Environment Manipulation during Disruptions for
  Multi-Agent Pickup and Delivery
Terraforming -- Environment Manipulation during Disruptions for Multi-Agent Pickup and Delivery
D. Vainshtein
Yaakov Sherma
Kiril Solovey
Oren Salzman
14
2
0
19 May 2023
MABL: Bi-Level Latent-Variable World Model for Sample-Efficient
  Multi-Agent Reinforcement Learning
MABL: Bi-Level Latent-Variable World Model for Sample-Efficient Multi-Agent Reinforcement Learning
Aravind Venugopal
Stephanie Milani
Fei Fang
Balaraman Ravindran
OffRL
18
0
0
12 Apr 2023
Multi-Agent Path Finding via Tree LSTM
Multi-Agent Path Finding via Tree LSTM
Yuhao Jiang
Kunjie Zhang
Qimai Li
Jiaxin Chen
Xiaolong Zhu
AI4CE
27
2
0
24 Oct 2022
MAVIPER: Learning Decision Tree Policies for Interpretable Multi-Agent
  Reinforcement Learning
MAVIPER: Learning Decision Tree Policies for Interpretable Multi-Agent Reinforcement Learning
Stephanie Milani
Zhicheng Zhang
Nicholay Topin
Z. Shi
Charles A. Kamhoua
Evangelos E. Papalexakis
Fei Fang
OffRL
78
13
0
25 May 2022
Standardized feature extraction from pairwise conflicts applied to the
  train rescheduling problem
Standardized feature extraction from pairwise conflicts applied to the train rescheduling problem
Anikó Kopacz
Ágnes Mester
Sándor Kolumbán
Lehel Csató
10
0
0
06 Apr 2022
An Introduction to Multi-Agent Reinforcement Learning and Review of its
  Application to Autonomous Mobility
An Introduction to Multi-Agent Reinforcement Learning and Review of its Application to Autonomous Mobility
Lukas M. Schmidt
Johanna Brosig
Axel Plinge
Bjoern M. Eskofier
Christopher Mutschler
33
33
0
15 Mar 2022
Flatland Competition 2020: MAPF and MARL for Efficient Train
  Coordination on a Grid World
Flatland Competition 2020: MAPF and MARL for Efficient Train Coordination on a Grid World
Florian Laurent
Manuel Schneider
Christian Scheller
J. Watson
Jiaoyang Li
...
Nilabha Bhattacharya
Shivam Agarwal
A. Egli
Erik Nygren
Sharada Mohanty
36
28
0
30 Mar 2021
Learning to run a Power Network Challenge: a Retrospective Analysis
Learning to run a Power Network Challenge: a Retrospective Analysis
Antoine Marot
Benjamin Donnot
Gabriel Dulac-Arnold
A. Kelly
A. O'Sullivan
J. Viebahn
M. Awad
Isabelle M Guyon
P. Panciatici
Camilo Romero
14
77
0
02 Mar 2021
PRIMAL2: Pathfinding via Reinforcement and Imitation Multi-Agent
  Learning -- Lifelong
PRIMAL2: Pathfinding via Reinforcement and Imitation Multi-Agent Learning -- Lifelong
Mehul Damani
Zhiyao Luo
Emerson Wenzel
Guillaume Sartoretti
AI4CE
102
120
0
16 Oct 2020
A Review of Cooperative Multi-Agent Deep Reinforcement Learning
A Review of Cooperative Multi-Agent Deep Reinforcement Learning
Afshin Oroojlooyjadid
Davood Hajinezhad
48
412
0
11 Aug 2019
Predicting Tactical Solutions to Operational Planning Problems under
  Imperfect Information
Predicting Tactical Solutions to Operational Planning Problems under Imperfect Information
Eric Larsen
Sébastien Lachapelle
Yoshua Bengio
Emma Frejinger
Simon Lacoste-Julien
Andrea Lodi
25
46
0
31 Jul 2018
1