ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.05899
  4. Cited By
Are Fewer Labels Possible for Few-shot Learning?

Are Fewer Labels Possible for Few-shot Learning?

10 December 2020
Suichan Li
Dongdong Chen
Yinpeng Chen
Lu Yuan
L. Zhang
Qi Chu
Nenghai Yu
    SSL
ArXivPDFHTML

Papers citing "Are Fewer Labels Possible for Few-shot Learning?"

2 / 2 papers shown
Title
Improved Baselines with Momentum Contrastive Learning
Improved Baselines with Momentum Contrastive Learning
Xinlei Chen
Haoqi Fan
Ross B. Girshick
Kaiming He
SSL
267
3,369
0
09 Mar 2020
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
311
11,681
0
09 Mar 2017
1