ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.06436
  4. Cited By
Uncertainty-driven refinement of tumor-core segmentation using 3D-to-2D
  networks with label uncertainty

Uncertainty-driven refinement of tumor-core segmentation using 3D-to-2D networks with label uncertainty

11 December 2020
Richard McKinley
M. Rebsamen
Katrin Daetwyler
Raphael Meier
Piotr Radojewski
Roland Wiest
    3DV
ArXivPDFHTML

Papers citing "Uncertainty-driven refinement of tumor-core segmentation using 3D-to-2D networks with label uncertainty"

2 / 2 papers shown
Title
Panoptica -- instance-wise evaluation of 3D semantic and instance
  segmentation maps
Panoptica -- instance-wise evaluation of 3D semantic and instance segmentation maps
Florian Kofler
Hendrik Möller
Josef A. Buchner
Ezequiel de la Rosa
Ivan Ezhov
...
Stefan K. Ehrlich
Annika Reinke
Bjoern H. Menze
Benedikt Wiestler
Marie Piraud
ISeg
22
7
0
05 Dec 2023
Trustworthy clinical AI solutions: a unified review of uncertainty
  quantification in deep learning models for medical image analysis
Trustworthy clinical AI solutions: a unified review of uncertainty quantification in deep learning models for medical image analysis
Benjamin Lambert
Florence Forbes
A. Tucholka
Senan Doyle
Harmonie Dehaene
M. Dojat
34
80
0
05 Oct 2022
1