ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.08015
  4. Cited By
Active Learning for Deep Gaussian Process Surrogates
v1v2 (latest)

Active Learning for Deep Gaussian Process Surrogates

15 December 2020
Annie Sauer
R. Gramacy
D. Higdon
    GPAI4CE
ArXiv (abs)PDFHTML

Papers citing "Active Learning for Deep Gaussian Process Surrogates"

12 / 12 papers shown
Title
Active Learning for Multiple Change Point Detection in Non-stationary Time Series with Deep Gaussian Processes
Active Learning for Multiple Change Point Detection in Non-stationary Time Series with Deep Gaussian Processes
Hao Zhao
Rong Pan
15
0
0
26 May 2025
STRIDE: Sparse Techniques for Regression in Deep Gaussian Processes
STRIDE: Sparse Techniques for Regression in Deep Gaussian Processes
Simon Urbainczyk
Aretha L. Teckentrup
Jonas Latz
GP
113
0
0
16 May 2025
Future Aware Safe Active Learning of Time Varying Systems using Gaussian Processes
Future Aware Safe Active Learning of Time Varying Systems using Gaussian Processes
Markus Lange-Hegermann
Christoph Zimmer
AI4TS
131
0
0
17 May 2024
Inverse Models for Estimating the Initial Condition of Spatio-Temporal
  Advection-Diffusion Processes
Inverse Models for Estimating the Initial Condition of Spatio-Temporal Advection-Diffusion Processes
Xiao Liu
K. Yeo
60
3
0
08 Feb 2023
Active Learning of Piecewise Gaussian Process Surrogates
Active Learning of Piecewise Gaussian Process Surrogates
Chiwoo Park
R. Waelder
Bonggwon Kang
Benji Maruyama
Soondo Hong
R. Gramacy
GP
65
2
0
20 Jan 2023
Active sampling: A machine-learning-assisted framework for finite
  population inference with optimal subsamples
Active sampling: A machine-learning-assisted framework for finite population inference with optimal subsamples
Henrik Imberg
Xiaomi Yang
Carol Flannagan
Jonas Bärgman
95
10
0
20 Dec 2022
Bayesian Active Learning with Fully Bayesian Gaussian Processes
Bayesian Active Learning with Fully Bayesian Gaussian Processes
Christoffer Riis
Francisco Antunes
F. B. Hüttel
C. L. Azevedo
Francisco Câmara Pereira
GP
96
24
0
20 May 2022
Triangulation candidates for Bayesian optimization
Triangulation candidates for Bayesian optimization
R. Gramacy
Anna Sauer
Nathan Wycoff
118
15
0
14 Dec 2021
A Sparse Expansion For Deep Gaussian Processes
A Sparse Expansion For Deep Gaussian Processes
Liang Ding
Rui Tuo
Shahin Shahrampour
48
6
0
11 Dec 2021
Deep Gaussian Process Emulation using Stochastic Imputation
Deep Gaussian Process Emulation using Stochastic Imputation
Deyu Ming
D. Williamson
S. Guillas
49
30
0
04 Jul 2021
Sensitivity Prewarping for Local Surrogate Modeling
Sensitivity Prewarping for Local Surrogate Modeling
Nathan Wycoff
M. Binois
R. Gramacy
46
10
0
15 Jan 2021
Sequential Design of Computer Experiments with Quantitative and
  Qualitative Factors in Applications to HPC Performance Optimization
Sequential Design of Computer Experiments with Quantitative and Qualitative Factors in Applications to HPC Performance Optimization
Xia Cai
Li Xu
C. D. Lin
Yili Hong
Xinwei Deng
35
0
0
06 Jan 2021
1