ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.08452
  4. Cited By
Molecular machine learning with conformer ensembles

Molecular machine learning with conformer ensembles

15 December 2020
Simon Axelrod
Rafael Gómez-Bombarelli
    AI4CE
ArXivPDFHTML

Papers citing "Molecular machine learning with conformer ensembles"

11 / 11 papers shown
Title
A Closer Look at AUROC and AUPRC under Class Imbalance
A Closer Look at AUROC and AUPRC under Class Imbalance
Matthew B. A. McDermott
Lasse Hyldig Hansen
Haoran Zhang
Giovanni Angelotti
Jack Gallifant
36
31
0
11 Jan 2024
MoleCLUEs: Molecular Conformers Maximally In-Distribution for Predictive
  Models
MoleCLUEs: Molecular Conformers Maximally In-Distribution for Predictive Models
Michael R. Maser
Natasa Tagasovska
Jae Hyeon Lee
Andrew Watkins
31
0
0
20 Jun 2023
A 3D-Shape Similarity-based Contrastive Approach to Molecular
  Representation Learning
A 3D-Shape Similarity-based Contrastive Approach to Molecular Representation Learning
Austin O. Atsango
N. Diamant
Ziqing Lu
Tommaso Biancalani
Gabriele Scalia
Kangway V Chuang
24
2
0
03 Nov 2022
Thermal half-lives of azobenzene derivatives: virtual screening based on
  intersystem crossing using a machine learning potential
Thermal half-lives of azobenzene derivatives: virtual screening based on intersystem crossing using a machine learning potential
Simon Axelrod
E. Shakhnovich
Rafael Gómez-Bombarelli
26
20
0
23 Jul 2022
ComENet: Towards Complete and Efficient Message Passing for 3D Molecular
  Graphs
ComENet: Towards Complete and Efficient Message Passing for 3D Molecular Graphs
Limei Wang
Yi Liu
Yu-Ching Lin
Hao Liu
Shuiwang Ji
GNN
38
89
0
17 Jun 2022
Learning 3D Representations of Molecular Chirality with Invariance to
  Bond Rotations
Learning 3D Representations of Molecular Chirality with Invariance to Bond Rotations
Keir Adams
L. Pattanaik
Connor W. Coley
21
32
0
08 Oct 2021
3D Infomax improves GNNs for Molecular Property Prediction
3D Infomax improves GNNs for Molecular Property Prediction
Hannes Stärk
Dominique Beaini
Gabriele Corso
Prudencio Tossou
Christian Dallago
Stephan Günnemann
Pietro Lió
AI4CE
30
203
0
08 Oct 2021
Pre-training Molecular Graph Representation with 3D Geometry
Pre-training Molecular Graph Representation with 3D Geometry
Shengchao Liu
Hanchen Wang
Weiyang Liu
Joan Lasenby
Hongyu Guo
Jian Tang
120
302
0
07 Oct 2021
Geometric Deep Learning on Molecular Representations
Geometric Deep Learning on Molecular Representations
Kenneth Atz
F. Grisoni
G. Schneider
AI4CE
30
287
0
26 Jul 2021
GeoMol: Torsional Geometric Generation of Molecular 3D Conformer
  Ensembles
GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles
O. Ganea
L. Pattanaik
Connor W. Coley
Regina Barzilay
K. Jensen
W. Green
Tommi Jaakkola
AI4CE
21
135
0
08 Jun 2021
Interaction Networks for Learning about Objects, Relations and Physics
Interaction Networks for Learning about Objects, Relations and Physics
Peter W. Battaglia
Razvan Pascanu
Matthew Lai
Danilo Jimenez Rezende
Koray Kavukcuoglu
AI4CE
OCL
PINN
GNN
278
1,400
0
01 Dec 2016
1