ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.09407
14
5

Joint Search of Data Augmentation Policies and Network Architectures

17 December 2020
Taiga Kashima
Yoshihiro Yamada
Shunta Saito
    3DPC
ArXivPDFHTML
Abstract

The common pipeline of training deep neural networks consists of several building blocks such as data augmentation and network architecture selection. AutoML is a research field that aims at automatically designing those parts, but most methods explore each part independently because it is more challenging to simultaneously search all the parts. In this paper, we propose a joint optimization method for data augmentation policies and network architectures to bring more automation to the design of training pipeline. The core idea of our approach is to make the whole part differentiable. The proposed method combines differentiable methods for augmentation policy search and network architecture search to jointly optimize them in the end-to-end manner. The experimental results show our method achieves competitive or superior performance to the independently searched results.

View on arXiv
Comments on this paper