Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
2012.09737
Cited By
v1
v2 (latest)
Model-free and Bayesian Ensembling Model-based Deep Reinforcement Learning for Particle Accelerator Control Demonstrated on the FERMI FEL
17 December 2020
Simon Hirlaender
N. Bruchon
Re-assign community
ArXiv (abs)
PDF
HTML
Github (6★)
Papers citing
"Model-free and Bayesian Ensembling Model-based Deep Reinforcement Learning for Particle Accelerator Control Demonstrated on the FERMI FEL"
6 / 6 papers shown
Improved Robustness of Deep Reinforcement Learning for Control of Time-Varying Systems by Bounded Extremum Seeking
Shaifalee Saxena
Alan Williams
Rafael Fierro
A. Scheinker
OOD
91
0
0
02 Oct 2025
Human-in-the-loop Reinforcement Learning for Data Quality Monitoring in Particle Physics Experiments
Olivia Jullian Parra
J. G. Pardiñas
Lorenzo Del Pianta Pérez
Maximilian Janisch
S. Klaver
Thomas Lehéricy
N. Serra
OffRL
201
2
0
24 May 2024
Robust Errant Beam Prognostics with Conditional Modeling for Particle Accelerators
Kishansingh Rajput
Malachi Schram
Willem Blokland
Yasir Alanazi
Pradeep Ramuhalli
Alexander Zhukov
Charles Peters
Ricardo Vilalta
164
9
0
22 Nov 2023
Trend-Based SAC Beam Control Method with Zero-Shot in Superconducting Linear Accelerator
Xiaolong Chen
X. Qi
Chun-Wei Su
Yuan He
Zhi-jun Wang
...
Weilong Chen
Shuhui Liu
Xiaoying Zhao
Duanyang Jia
Man Yi
115
0
0
23 May 2023
Machine Learning in Nuclear Physics
A. Boehnlein
M. Diefenthaler
C. Fanelli
M. Hjorth-Jensen
T. Horn
...
M. Schram
A. Scheinker
Michael S. Smith
Xin-Nian Wang
Veronique Ziegler
AI4CE
248
46
0
04 Dec 2021
Adaptive Machine Learning for Time-Varying Systems: Low Dimensional Latent Space Tuning
A. Scheinker
AI4CE
217
31
0
13 Jul 2021
1
Page 1 of 1