ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.10013
  4. Cited By
Flow-based Generative Models for Learning Manifold to Manifold Mappings

Flow-based Generative Models for Learning Manifold to Manifold Mappings

18 December 2020
Xingjian Zhen
Rudrasis Chakraborty
Liu Yang
Vikas Singh
    DRL
    MedIm
ArXivPDFHTML

Papers citing "Flow-based Generative Models for Learning Manifold to Manifold Mappings"

4 / 4 papers shown
Title
RIE-SenseNet: Riemannian Manifold Embedding of Multi-Source Industrial Sensor Signals for Robust Pattern Recognition
RIE-SenseNet: Riemannian Manifold Embedding of Multi-Source Industrial Sensor Signals for Robust Pattern Recognition
Jiaju Kang
Puyu Han
Yang Chun
Xu Wang
Luqi Gong
58
0
0
04 Feb 2025
SPDGAN: A Generative Adversarial Network based on SPD Manifold Learning for Automatic Image Colorization
SPDGAN: A Generative Adversarial Network based on SPD Manifold Learning for Automatic Image Colorization
Youssef Mourchid
M. Donias
Y. Berthoumieu
Mohamed Najim
GAN
30
1
0
21 Dec 2023
Modular Flows: Differential Molecular Generation
Modular Flows: Differential Molecular Generation
Yogesh Verma
Samuel Kaski
Markus Heinonen
Vikas K. Garg
11
14
0
12 Oct 2022
Geometric deep learning: going beyond Euclidean data
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
228
3,202
0
24 Nov 2016
1