ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.12076
  4. Cited By
MetaAugment: Sample-Aware Data Augmentation Policy Learning

MetaAugment: Sample-Aware Data Augmentation Policy Learning

22 December 2020
Fengwei Zhou
Jiawei Li
Chuanlong Xie
Fei Chen
Lanqing Hong
Rui Sun
Zhenguo Li
ArXivPDFHTML

Papers citing "MetaAugment: Sample-Aware Data Augmentation Policy Learning"

10 / 10 papers shown
Title
Reducing and Exploiting Data Augmentation Noise through Meta Reweighting
  Contrastive Learning for Text Classification
Reducing and Exploiting Data Augmentation Noise through Meta Reweighting Contrastive Learning for Text Classification
Guanyi Mou
Yichuan Li
Kyumin Lee
28
3
0
26 Sep 2024
Variational Partial Group Convolutions for Input-Aware Partial
  Equivariance of Rotations and Color-Shifts
Variational Partial Group Convolutions for Input-Aware Partial Equivariance of Rotations and Color-Shifts
Hyunsu Kim
Yegon Kim
Hongseok Yang
Juho Lee
37
0
0
05 Jul 2024
Data augmentation with automated machine learning: approaches and performance comparison with classical data augmentation methods
Data augmentation with automated machine learning: approaches and performance comparison with classical data augmentation methods
A. Mumuni
F. Mumuni
65
5
0
13 Mar 2024
LatentAugment: Dynamically Optimized Latent Probabilities of Data
  Augmentation
LatentAugment: Dynamically Optimized Latent Probabilities of Data Augmentation
K. Kuriyama
24
1
0
04 May 2023
LA3: Efficient Label-Aware AutoAugment
LA3: Efficient Label-Aware AutoAugment
Mingjun Zhao
Sha Lu
Zixuan Wang
Xiaoli Wang
Di Niu
11
1
0
20 Apr 2023
Automatic Data Augmentation via Invariance-Constrained Learning
Automatic Data Augmentation via Invariance-Constrained Learning
Ignacio Hounie
Luiz F. O. Chamon
Alejandro Ribeiro
23
10
0
29 Sep 2022
DHA: End-to-End Joint Optimization of Data Augmentation Policy,
  Hyper-parameter and Architecture
DHA: End-to-End Joint Optimization of Data Augmentation Policy, Hyper-parameter and Architecture
Kaichen Zhou
Lanqing Hong
Shuailiang Hu
Fengwei Zhou
Binxin Ru
Jiashi Feng
Zhenguo Li
54
10
0
13 Sep 2021
An overview of mixing augmentation methods and augmentation strategies
An overview of mixing augmentation methods and augmentation strategies
Dominik Lewy
Jacek Mañdziuk
23
59
0
21 Jul 2021
Direct Differentiable Augmentation Search
Direct Differentiable Augmentation Search
Aoming Liu
Zehao Huang
Zhiwu Huang
Naiyan Wang
25
32
0
09 Apr 2021
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
323
11,681
0
09 Mar 2017
1