ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.12106
  4. Cited By
TorchMD: A deep learning framework for molecular simulations

TorchMD: A deep learning framework for molecular simulations

22 December 2020
Stefan Doerr
Maciej Majewski
Adria Pérez
Andreas Krämer
C. Clementi
Frank Noe
T. Giorgino
Gianni De Fabritiis
    AI4CE
ArXiv (abs)PDFHTML

Papers citing "TorchMD: A deep learning framework for molecular simulations"

21 / 21 papers shown
Title
Surrogate modeling of Cellular-Potts Agent-Based Models as a segmentation task using the U-Net neural network architecture
Surrogate modeling of Cellular-Potts Agent-Based Models as a segmentation task using the U-Net neural network architecture
Tien Comlekoglu
J. Q. Toledo-Marín
Tina Comlekoglu
Douglas W. DeSimone
Shayn M. Peirce
Geoffrey C. Fox
J. Glazier
159
1
0
01 May 2025
Generative diffusion model surrogates for mechanistic agent-based biological models
Generative diffusion model surrogates for mechanistic agent-based biological models
Tien Comlekoglu
J. Q. Toledo-Marín
Douglas W. DeSimone
Shayn M. Peirce
Geoffrey C. Fox
J. Glazier
DiffMMedIm
139
1
0
01 May 2025
Equivariant Masked Position Prediction for Efficient Molecular Representation
Equivariant Masked Position Prediction for Efficient Molecular Representation
Junyi An
Chao Qu
Yun-Fei Shi
XinHao Liu
Qianwei Tang
Fenglei Cao
Yuan Qi
101
0
0
12 Feb 2025
AMARO: All Heavy-Atom Transferable Neural Network Potentials of Protein
  Thermodynamics
AMARO: All Heavy-Atom Transferable Neural Network Potentials of Protein Thermodynamics
Antonio Mirarchi
Raúl P. Peláez
Guillem Simeon
Gianni De Fabritiis
93
3
0
26 Sep 2024
chemtrain: Learning Deep Potential Models via Automatic Differentiation and Statistical Physics
chemtrain: Learning Deep Potential Models via Automatic Differentiation and Statistical Physics
Paul Fuchs
Stephan Thaler
Sebastien Röcken
Julija Zavadlav
DiffM
162
10
0
28 Aug 2024
Molecule Graph Networks with Many-body Equivariant Interactions
Molecule Graph Networks with Many-body Equivariant Interactions
Zetian Mao
Jiawen Li
Chen Liang
Diptesh Das
Masato Sumita
Koji Tsuda
Kelin Xia
Koji Tsuda
114
1
0
19 Jun 2024
Pretraining Strategy for Neural Potentials
Pretraining Strategy for Neural Potentials
Zehua Zhang
Zijie Li
A. Farimani
AI4CE
76
0
0
24 Feb 2024
Differentiable Simulations for Enhanced Sampling of Rare Events
Differentiable Simulations for Enhanced Sampling of Rare Events
Martin Sípka
Johannes C. B. Dietschreit
Lukáš Grajciar
Rafael Gómez-Bombarelli
127
11
0
09 Jan 2023
Machine Learning Coarse-Grained Potentials of Protein Thermodynamics
Machine Learning Coarse-Grained Potentials of Protein Thermodynamics
Maciej Majewski
Adriana Pérez
Philipp Thölke
Stefan Doerr
N. Charron
T. Giorgino
B. Husic
C. Clementi
Frank Noé
Gianni De Fabritiis
AI4CE
73
76
0
14 Dec 2022
SchNetPack 2.0: A neural network toolbox for atomistic machine learning
SchNetPack 2.0: A neural network toolbox for atomistic machine learning
Kristof T. Schütt
Stefaan S. P. Hessmann
Niklas W. A. Gebauer
Jonas Lederer
M. Gastegger
78
65
0
11 Dec 2022
Forces are not Enough: Benchmark and Critical Evaluation for Machine
  Learning Force Fields with Molecular Simulations
Forces are not Enough: Benchmark and Critical Evaluation for Machine Learning Force Fields with Molecular Simulations
Xiang Fu
Zhenghao Wu
Wujie Wang
T. Xie
S. Keten
Rafael Gómez-Bombarelli
Tommi Jaakkola
93
146
0
13 Oct 2022
ImmunoLingo: Linguistics-based formalization of the antibody language
ImmunoLingo: Linguistics-based formalization of the antibody language
Mai Ha Vu
Philippe A. Robert
Rahmad Akbar
B. Swiatczak
G. K. Sandve
Dag Trygve Tryslew Haug
Victor Greiff
AI4CE
99
8
0
26 Sep 2022
Learning Pair Potentials using Differentiable Simulations
Learning Pair Potentials using Differentiable Simulations
Wujie Wang
Zhenghao Wu
Rafael Gómez-Bombarelli
82
26
0
16 Sep 2022
Building Robust Machine Learning Models for Small Chemical Science Data:
  The Case of Shear Viscosity
Building Robust Machine Learning Models for Small Chemical Science Data: The Case of Shear Viscosity
Nikhil V. S. Avula
S. K. Veesam
Sudarshan Behera
S. Balasubramanian
55
8
0
23 Aug 2022
Thermodynamics-inspired Explanations of Artificial Intelligence
Thermodynamics-inspired Explanations of Artificial Intelligence
S. Mehdi
P. Tiwary
AI4CE
56
18
0
27 Jun 2022
Automatic Identification of Chemical Moieties
Automatic Identification of Chemical Moieties
Jonas Lederer
M. Gastegger
Kristof T. Schütt
Michael C. Kampffmeyer
Klaus-Robert Muller
Oliver T. Unke
69
5
0
30 Mar 2022
Differentiable Matrix Elements with MadJax
Differentiable Matrix Elements with MadJax
Lukas Heinrich
Michael Kagan
58
20
0
28 Feb 2022
TorchMD-NET: Equivariant Transformers for Neural Network based Molecular
  Potentials
TorchMD-NET: Equivariant Transformers for Neural Network based Molecular Potentials
Philipp Thölke
Gianni De Fabritiis
AI4CE
125
197
0
05 Feb 2022
Graph Neural Networks Accelerated Molecular Dynamics
Graph Neural Networks Accelerated Molecular Dynamics
Zijie Li
Kazem Meidani
Prakarsh Yadav
A. Farimani
GNNAI4CE
70
59
0
06 Dec 2021
Learning neural network potentials from experimental data via
  Differentiable Trajectory Reweighting
Learning neural network potentials from experimental data via Differentiable Trajectory Reweighting
Stephan Thaler
Julija Zavadlav
79
71
0
02 Jun 2021
Coupling streaming AI and HPC ensembles to achieve 100-1000x faster
  biomolecular simulations
Coupling streaming AI and HPC ensembles to achieve 100-1000x faster biomolecular simulations
Alexander Brace
I. Yakushin
Heng Ma
Anda Trifan
T. Munson
Ian Foster
A. Ramanathan
Hyungro Lee
Matteo Turilli
S. Jha
AI4CE
62
20
0
10 Apr 2021
1