Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2012.12106
Cited By
TorchMD: A deep learning framework for molecular simulations
22 December 2020
Stefan Doerr
Maciej Majewski
Adria Pérez
Andreas Krämer
C. Clementi
Frank Noe
T. Giorgino
Gianni De Fabritiis
AI4CE
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"TorchMD: A deep learning framework for molecular simulations"
21 / 21 papers shown
Title
Surrogate modeling of Cellular-Potts Agent-Based Models as a segmentation task using the U-Net neural network architecture
Tien Comlekoglu
J. Q. Toledo-Marín
Tina Comlekoglu
Douglas W. DeSimone
Shayn M. Peirce
Geoffrey C. Fox
J. Glazier
159
1
0
01 May 2025
Generative diffusion model surrogates for mechanistic agent-based biological models
Tien Comlekoglu
J. Q. Toledo-Marín
Douglas W. DeSimone
Shayn M. Peirce
Geoffrey C. Fox
J. Glazier
DiffM
MedIm
139
1
0
01 May 2025
Equivariant Masked Position Prediction for Efficient Molecular Representation
Junyi An
Chao Qu
Yun-Fei Shi
XinHao Liu
Qianwei Tang
Fenglei Cao
Yuan Qi
101
0
0
12 Feb 2025
AMARO: All Heavy-Atom Transferable Neural Network Potentials of Protein Thermodynamics
Antonio Mirarchi
Raúl P. Peláez
Guillem Simeon
Gianni De Fabritiis
93
3
0
26 Sep 2024
chemtrain: Learning Deep Potential Models via Automatic Differentiation and Statistical Physics
Paul Fuchs
Stephan Thaler
Sebastien Röcken
Julija Zavadlav
DiffM
162
10
0
28 Aug 2024
Molecule Graph Networks with Many-body Equivariant Interactions
Zetian Mao
Jiawen Li
Chen Liang
Diptesh Das
Masato Sumita
Koji Tsuda
Kelin Xia
Koji Tsuda
114
1
0
19 Jun 2024
Pretraining Strategy for Neural Potentials
Zehua Zhang
Zijie Li
A. Farimani
AI4CE
76
0
0
24 Feb 2024
Differentiable Simulations for Enhanced Sampling of Rare Events
Martin Sípka
Johannes C. B. Dietschreit
Lukáš Grajciar
Rafael Gómez-Bombarelli
127
11
0
09 Jan 2023
Machine Learning Coarse-Grained Potentials of Protein Thermodynamics
Maciej Majewski
Adriana Pérez
Philipp Thölke
Stefan Doerr
N. Charron
T. Giorgino
B. Husic
C. Clementi
Frank Noé
Gianni De Fabritiis
AI4CE
73
76
0
14 Dec 2022
SchNetPack 2.0: A neural network toolbox for atomistic machine learning
Kristof T. Schütt
Stefaan S. P. Hessmann
Niklas W. A. Gebauer
Jonas Lederer
M. Gastegger
78
65
0
11 Dec 2022
Forces are not Enough: Benchmark and Critical Evaluation for Machine Learning Force Fields with Molecular Simulations
Xiang Fu
Zhenghao Wu
Wujie Wang
T. Xie
S. Keten
Rafael Gómez-Bombarelli
Tommi Jaakkola
93
146
0
13 Oct 2022
ImmunoLingo: Linguistics-based formalization of the antibody language
Mai Ha Vu
Philippe A. Robert
Rahmad Akbar
B. Swiatczak
G. K. Sandve
Dag Trygve Tryslew Haug
Victor Greiff
AI4CE
99
8
0
26 Sep 2022
Learning Pair Potentials using Differentiable Simulations
Wujie Wang
Zhenghao Wu
Rafael Gómez-Bombarelli
82
26
0
16 Sep 2022
Building Robust Machine Learning Models for Small Chemical Science Data: The Case of Shear Viscosity
Nikhil V. S. Avula
S. K. Veesam
Sudarshan Behera
S. Balasubramanian
55
8
0
23 Aug 2022
Thermodynamics-inspired Explanations of Artificial Intelligence
S. Mehdi
P. Tiwary
AI4CE
56
18
0
27 Jun 2022
Automatic Identification of Chemical Moieties
Jonas Lederer
M. Gastegger
Kristof T. Schütt
Michael C. Kampffmeyer
Klaus-Robert Muller
Oliver T. Unke
69
5
0
30 Mar 2022
Differentiable Matrix Elements with MadJax
Lukas Heinrich
Michael Kagan
58
20
0
28 Feb 2022
TorchMD-NET: Equivariant Transformers for Neural Network based Molecular Potentials
Philipp Thölke
Gianni De Fabritiis
AI4CE
125
197
0
05 Feb 2022
Graph Neural Networks Accelerated Molecular Dynamics
Zijie Li
Kazem Meidani
Prakarsh Yadav
A. Farimani
GNN
AI4CE
70
59
0
06 Dec 2021
Learning neural network potentials from experimental data via Differentiable Trajectory Reweighting
Stephan Thaler
Julija Zavadlav
79
71
0
02 Jun 2021
Coupling streaming AI and HPC ensembles to achieve 100-1000x faster biomolecular simulations
Alexander Brace
I. Yakushin
Heng Ma
Anda Trifan
T. Munson
Ian Foster
A. Ramanathan
Hyungro Lee
Matteo Turilli
S. Jha
AI4CE
62
20
0
10 Apr 2021
1