ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.12732
  4. Cited By
Identification of Unexpected Decisions in Partially Observable
  Monte-Carlo Planning: a Rule-Based Approach

Identification of Unexpected Decisions in Partially Observable Monte-Carlo Planning: a Rule-Based Approach

23 December 2020
Giulio Mazzi
A. Castellini
Alessandro Farinelli
ArXivPDFHTML

Papers citing "Identification of Unexpected Decisions in Partially Observable Monte-Carlo Planning: a Rule-Based Approach"

2 / 2 papers shown
Title
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
251
1,843
0
03 Feb 2017
Safety Verification of Deep Neural Networks
Safety Verification of Deep Neural Networks
Xiaowei Huang
Marta Kwiatkowska
Sen Wang
Min Wu
AAML
183
932
0
21 Oct 2016
1