Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2012.13376
Cited By
A Physics-Informed Deep Learning Paradigm for Car-Following Models
24 December 2020
Zhaobin Mo
Xuan Di
Rongye Shi
PINN
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Physics-Informed Deep Learning Paradigm for Car-Following Models"
28 / 28 papers shown
Title
A Knowledge-Informed Deep Learning Paradigm for Generalizable and Stability-Optimized Car-Following Models
C. Wang
Dongyao Jia
Wei Wang
Dong Ngoduy
Bei Peng
Jianping Wang
19
0
0
19 Apr 2025
AI-Powered Urban Transportation Digital Twin: Methods and Applications
Xuan Di
Yongjie Fu
Mehmet K.Turkcan
Mahshid Ghasemi
Zhaobin Mo
Chengbo Zang
Abhishek Adhikari
Z. Kostić
Gil Zussman
AI4CE
31
0
0
30 Dec 2024
GenAI-powered Multi-Agent Paradigm for Smart Urban Mobility: Opportunities and Challenges for Integrating Large Language Models (LLMs) and Retrieval-Augmented Generation (RAG) with Intelligent Transportation Systems
Haowen Xu
Jinghui Yuan
Anye Zhou
Guanhao Xu
Wan Li
Xuegang Ban
Xinyue Ye
21
8
0
31 Aug 2024
Traffic expertise meets residual RL: Knowledge-informed model-based residual reinforcement learning for CAV trajectory control
Zihao Sheng
Zilin Huang
Sikai Chen
31
8
0
30 Aug 2024
Improving the Intelligent Driver Model by Incorporating Vehicle Dynamics: Microscopic Calibration and Macroscopic Validation
Dominik Salles
Steve Oswald
H. Reuss
15
0
0
07 Aug 2024
Discovering Car-following Dynamics from Trajectory Data through Deep Learning
Ohay Angah
James Enouen
Xuegang (Jeff) Ban
Ban
Yan Liu
27
0
0
01 Aug 2024
Communication-Aware Reinforcement Learning for Cooperative Adaptive Cruise Control
Sicong Jiang
Seongjin Choi
Lijun Sun
32
1
0
12 Jul 2024
MetaFollower: Adaptable Personalized Autonomous Car Following
Xianda Chen
Kehua Chen
Meixin Zhu
Hao
Yang
Shaojie Shen
Xuesong Wang
Yinhai Wang
22
3
0
23 Jun 2024
EditFollower: Tunable Car Following Models for Customizable Adaptive Cruise Control Systems
Xianda Chen
Xu Han
Meixin Zhu
Xiaowen Chu
PakHin Tiu
Xinhu Zheng
Yinhai Wang
30
4
0
23 Jun 2024
COOL: A Conjoint Perspective on Spatio-Temporal Graph Neural Network for Traffic Forecasting
Wei Ju
Yusheng Zhao
Yifang Qin
Siyu Yi
Jingyang Yuan
Zhiping Xiao
Xiao Luo
Xiting Yan
Ming Zhang
26
23
0
02 Mar 2024
Privacy-Preserving Data Fusion for Traffic State Estimation: A Vertical Federated Learning Approach
Qiqing Wang
Kaidi Yang
FedML
29
8
0
22 Jan 2024
RACER: Rational Artificial Intelligence Car-following-model Enhanced by Reality
Tianyi Li
Alexander Halatsis
Raphael E. Stern
11
2
0
12 Dec 2023
A Physics Enhanced Residual Learning (PERL) Framework for Vehicle Trajectory Prediction
Keke Long
Zihao Sheng
Haotian Shi
Xiaopeng Li
Sikai Chen
Sue Ahn
21
5
0
26 Sep 2023
TrTr: A Versatile Pre-Trained Large Traffic Model based on Transformer for Capturing Trajectory Diversity in Vehicle Population
Ruyi Feng
Zhibin Li
Bowen Liu
Yan Ding
13
2
0
22 Sep 2023
Dynamic Hypergraph Structure Learning for Traffic Flow Forecasting
Yusheng Zhao
Xiao Luo
Wei Ju
C. L. Philip Chen
Xiansheng Hua
Ming Zhang
AI4TS
23
26
0
21 Sep 2023
Perimeter Control with Heterogeneous Metering Rates for Cordon Signals: A Physics-Regularized Multi-Agent Reinforcement Learning Approach
Jiajie Yu
Pierre-Antoine Laharotte
Yugang Han
Wei Ma
L. Leclercq
11
3
0
24 Aug 2023
Fourier neural operator for learning solutions to macroscopic traffic flow models: Application to the forward and inverse problems
Bilal Thonnam Thodi
Sai Venkata Ramana Ambadipudi
S. Jabari
AI4CE
25
13
0
14 Aug 2023
Car-Following Models: A Multidisciplinary Review
T. Zhang
Ph.D.
Peter J. Jin
Ph.D.
Sean T. McQuade
Ph.D.
Alexandre M. Bayen
Ph.D.
B. Piccoli
27
3
0
14 Apr 2023
Inverting the Fundamental Diagram and Forecasting Boundary Conditions: How Machine Learning Can Improve Macroscopic Models for Traffic Flow
Maya Briani
E. Cristiani
Elia Onofri
26
2
0
21 Mar 2023
Physics-Informed Deep Learning For Traffic State Estimation: A Survey and the Outlook
Xuan Di
Rongye Shi
Zhaobin Mo
Yongjie Fu
PINN
AI4TS
AI4CE
24
28
0
03 Mar 2023
On the Limitations of Physics-informed Deep Learning: Illustrations Using First Order Hyperbolic Conservation Law-based Traffic Flow Models
Archie J. Huang
S. Agarwal
AI4CE
PINN
11
24
0
23 Feb 2023
IDM-Follower: A Model-Informed Deep Learning Method for Long-Sequence Car-Following Trajectory Prediction
Yilin Wang
Yiheng Feng
30
5
0
20 Oct 2022
STDEN: Towards Physics-Guided Neural Networks for Traffic Flow Prediction
Jiahao Ji
Jingyuan Wang
Zhe Jiang
Jiawei Jiang
Hu Zhang
DiffM
PINN
OOD
AI4CE
12
77
0
01 Sep 2022
Quantifying Uncertainty In Traffic State Estimation Using Generative Adversarial Networks
Zhaobin Mo
Yongjie Fu
Xuan Di
11
11
0
19 Jun 2022
A Generative Car-following Model Conditioned On Driving Styles
Yifan Zhang
Xinhong Chen
Jianping Wang
Zuduo Zheng
Kui Wu
16
37
0
10 Dec 2021
A Physics-Informed Deep Learning Paradigm for Traffic State and Fundamental Diagram Estimation
Rongye Shi
Zhaobin Mo
Kuang Huang
Xuan Di
Qi Du
PINN
17
85
0
06 Jun 2021
Applications of deep learning in traffic congestion detection, prediction and alleviation: A survey
Nishant Kumar
Martin Raubal
AI4TS
AI4CE
17
88
0
19 Feb 2021
A Survey on Autonomous Vehicle Control in the Era of Mixed-Autonomy: From Physics-Based to AI-Guided Driving Policy Learning
Xuan Di
Rongye Shi
21
173
0
10 Jul 2020
1